Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 20460, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33235237

ABSTRACT

Limited toxicity data on electronic cigarette (ECIG) impede evidence-based policy recommendations. We compared two popular mixed fruit flavored ECIG-liquids with and without nicotine aerosolized at 40 W (E-smoke) with respect to particle number concentrations, chemical composition, and response on physiologically relevant human bronchial and alveolar lung mucosa models cultured at air-liquid interface. E-smoke was characterized by significantly increased particle number concentrations with increased wattage (25, 40, and 55 W) and nicotine presence. The chemical composition of E-smoke differed across the two tested flavors in terms of cytotoxic compounds including p-benzoquinone, nicotyrine, and flavoring agents (for example vanillin, ethyl vanillin). Significant differences in the expression of markers for pro-inflammation, oxidative stress, tissue injury/repair, alarm anti-protease, anti-microbial defense, epithelial barrier function, and epigenetic modification were observed between the flavors, nicotine content, and/ or lung models (bronchial or alveolar). Our findings indicate that ECIG toxicity is influenced by combination of multiple factors including flavor, nicotine content, vaping regime, and the region of respiratory tree (bronchial or alveolar). Toxic chemicals and flavoring agents detected in high concentrations in the E-smoke of each flavor warrant independent evaluation for their specific role in imparting toxicity. Therefore, multi-disciplinary approaches are warranted for comprehensive safety profiling of ECIG.


Subject(s)
Bronchi/cytology , Genetic Markers/drug effects , Nicotine/adverse effects , Pulmonary Alveoli/cytology , Vaping/adverse effects , Bronchi/chemistry , Bronchi/drug effects , Cell Culture Techniques , Cell Line , Electronic Nicotine Delivery Systems , Flavoring Agents/adverse effects , Flavoring Agents/chemistry , Gene Expression Regulation/drug effects , Humans , Models, Biological , Particle Size , Pulmonary Alveoli/chemistry , Pulmonary Alveoli/drug effects
2.
Toxicol In Vitro ; 61: 104617, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31381966

ABSTRACT

Diacetyl is an artificial flavouring agent, known to cause bronchiolitis obliterans. Diacetyl-induced pulmonary effects were assessed in human primary bronchial epithelial cells (PBEC) cultured at air-liquid interface (ALI). The PBEC-ALI models were exposed to clean air (sham) and diacetyl vapour (1, 3, 10 and 30 ppm) for 30 min. At 6 and 24 h post-exposure, cell medium was sampled for assessment of cytotoxicity measurement, and CXCL8, MMP9 secretion by ELISA. Pro-inflammatory, oxidative stress, tissue injury/repair, anti-protease and beta-defensin markers were assessed using qRT-PCR. Additionally, epidermal growth factor receptor ligands (amphiregulin) and anti-protease (SLPI) were analysed at 6 h, 8 h and 24 h post exposure to 1 and 10 ppm diacetyl. No significant cytotoxicity was observed at any exposure level. MMP9 was significantly increased in both apical and basal media at 24 h. Both SLPI and amphiregulin secretion were significantly increased following exposure to 10 ppm diacetyl. Exposure of PBEC-ALI model to diacetyl vapour resulted in significantly altered transcript expression of pro-inflammatory, oxidative stress, anti-protease, tissue injury/repair markers. Changes in transcript expression of significantly altered markers were more prominent 24 h post-exposure compared to 6 h. This study warrants further mechanistic investigations to elucidate the pulmonary effects of inhaled diacetyl vapour using physiologically relevant in vitro models.


Subject(s)
Bronchi/cytology , Diacetyl/toxicity , Epithelial Cells/drug effects , Flavoring Agents/toxicity , Cell Culture Techniques , Cell Survival/drug effects , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Epithelial Cells/metabolism , ErbB Receptors/metabolism , Humans , Ligands , Matrix Metalloproteinase 9/genetics , Models, Biological , NF-kappa B/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...