Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Res ; 40(2): 297-311, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38525135

ABSTRACT

HemoHIM G is a functional food ingredient composed of a triple herbal combination of Angelica sinensis, Ligusticum chuanxiong, and Paeonia lactiflora, to improve impaired immune function. Considering the pharmacological benefits of its constituent herbal components, HemoHIM G is anticipated to have various health benefits; however, its toxicity has not been thoroughly evaluated. Here, we conducted a comprehensive study to assess the safety of HemoHIM G in terms of acute oral toxicity, 13-week repeat-dose toxicity, and genotoxicity. In the oral acute toxicity study, Sprague-Dawley rats were orally administered a single dose of HemoHIM G at 5000 mg/kg/day, the limit dose for the acute study. No abnormal findings or adverse effects were observed in this study, as confirmed by gross pathology. A 13-week repeated-dose toxicity study was conducted with HemoHIM G at doses of 1250, 2500, and 5000 mg/kg/day to examine the subchronic toxicity in both male and female rats after 28 days of dose-range finding study. No test substance-related clinical signs or mortality was observed at any of the tested doses. Gross pathology, hematology, blood chemistry, and histopathology were within normal ranges, further supporting the safety of HemoHIM G. Therefore, the NOAEL of HemoHIM G was considered to be at 5000 mg/kg/day for both sexes of rats. Bacterial reverse mutation tests, a chromosome aberration test in human peripheral blood lymphocytes, and a mouse micronuclei test were conducted to identify the potential genotoxicity of HemoHIM G. HemoHIM G is non-mutagenic and non-clastogenic. Collectively, these findings provide valuable evidence for the safe use of HemoHIM G as a functional food ingredient.

2.
Materials (Basel) ; 15(13)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35806635

ABSTRACT

A rotating body consisting of a rotating shaft and bearings inevitably generates voltage and current. The potential difference between the bearing and the shaft is the main cause of electrical corrosion, which causes motor failure, shortened bearing life, and many safety issues. To prevent corrosion, passive shaft-grounding devices use conductive materials and brushes; however, these devices cannot be completely grounded, so there is a difference in local potential, and brush friction generates a shaft current. The cumulative effect causes electrical corrosion; therefore, in this study, an electrical corrosion protection device for the rotating power supply shaft was developed. It detected current and potential difference and established a feedback system on the rotating shaft. It also energized the rotating shaft using an external power supply to eliminate the potential difference on the shaft and reduce electrical corrosion. The result was prolonged motor life and improved stability, operating efficiency, and operability of related equipment. In this study, a rotating-shaft test rig was set up, and a constant current was applied to simulate the potential difference and verify the performance of the anti-corrosion device. Gradually, the design scheme was optimized; the potential difference on the rotating shaft was accurately quantified; and the goal of controlling the potential difference within 2 mV was achieved. Finally, the electrical corrosion protection device was applied to the rotating shaft of a merchant ship, and the current and potential difference on the rotating shaft were monitored for 30 days. The results showed that the device had excellent performance in reducing the potential difference on the rotating shaft and preventing electrical corrosion.

3.
Toxicol In Vitro ; 75: 105136, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33675894

ABSTRACT

Although in vivo inhalation toxicity tests have been widely conducted, the testing of many chemicals is limited for economic and ethical reasons. Therefore, we previously developed an in vitro acute inhalation toxicity test method. The goal of the present pre-validation study was to evaluate the transferability, reproducibility, and predictive capacity of this method. After confirming the transferability of the Calu-3 epithelium cytotoxicity assay, reproducibility was evaluated using 20 test substances at three independent institutions. Cytotoxicity data were analyzed using statistical methods, including the intra-class correlation coefficient and Bland-Altman plots for within- and between-laboratory reproducibility. The assay for the 20 test substances showed excellent agreement within and between laboratories. To evaluate the predictive capacity, 77 test substances were analyzed for acute inhalation toxicity. Accuracy was measured using a cutoff of 40%, and the relevance was analyzed as a receiver-operating characteristic (ROC) curve. An accuracy of 72.73% was obtained, and the area under the ROC curve was 0.77, indicating moderate performance. In this study, we found that the in vitro acute inhalation toxicity test method demonstrated good reliability and relevance for predicting the acute toxicity of inhalable chemicals. Hence, this assay has potential as an alternative test for screening acutely toxic inhalants.


Subject(s)
Biological Assay/methods , Inhalation Exposure/adverse effects , Toxicity Tests, Acute/methods , Administration, Inhalation , Animal Testing Alternatives , Cell Line, Tumor , Epithelium , Humans , Reproducibility of Results
4.
J Microbiol Biotechnol ; 17(5): 800-5, 2007 May.
Article in English | MEDLINE | ID: mdl-18051302

ABSTRACT

Two endoglucanases with processive cellulase activities, produced from Fomitopsis palustris grown on 2% microcrystalline cellulose (Avicel), were purified to homogeneity by anion-exchange and gel filtration column chromatography systems. SDS-PAGE analysis indicated that the molecular masses of the purified enzymes were 47 kDa and 35 kDa, respectively. The amino acid sequence analysis of the 47-kDa protein (EG47) showed a sequence similarity with fungal glycoside hydrolase family 5 endoglucanase from the white-rot fungus Phanerochaete chrysosporium. N-terminal and internal amino acid sequences of the 35-kDa protein (EG35), however, had no homology with any other glycosylhydrolases, although the enzyme had high specific activity against carboxymethyl cellulose, which is a typical substrate for endoglucanases. The initial rate of Avicel hydrolysis by EG35 was relatively fast for 48 h, and the amount of soluble reducing sugar released after 96 h was 100 microg/ml. Although EG47 also hydrolyzed Avicel, the hydrolysis rate was lower than that of EG35. Thin layer chromatography analysis of the hydrolysis products released from Avicel indicated that the main product was cellobiose, suggesting that the brown-rot fungus possesses processive EGs capable of degrading crystalline cellulose.


Subject(s)
Basidiomycota/enzymology , Cellulase/metabolism , Carboxymethylcellulose Sodium/metabolism , Cellobiose/metabolism , Cellulase/chemistry , Cellulase/isolation & purification , Cellulose , Chromatography, Gel , Chromatography, Ion Exchange , Kinetics , Molecular Sequence Data , Molecular Weight , Phanerochaete/genetics , Sequence Analysis, Protein , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...