Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 178: 108069, 2023 08.
Article in English | MEDLINE | ID: mdl-37419059

ABSTRACT

In this study, we developed a practical approach to augment elemental carbon (EC) emissions to improve the reproducibility of the most recent air quality with photochemical grid modeling in support of source-receptor relationship analysis. We demonstrated the usefulness of this approach with a series of simulations for EC concentrations over Northeast Asia during the 2016 Korea-United States Air Quality study. Considering the difficulty of acquiring EC observational data in foreign countries, our approach takes two steps: (1) augmenting upwind EC emissions based on simulated upwind contributions and observational data at a downwind EC monitor considered as the most representative monitor for upwind influences and (2) adjusting downwind EC emissions based on simulated downwind contributions, including the effects of updated upwind emissions from the first step and observational data at the downwind EC monitors. The emission adjustment approach resulted in EC emissions 2.5 times higher than the original emissions in the modeling domain. The EC concentration in the downwind area was observed to be 1.0 µg m-3 during the study period, while the simulated EC concentration was 0.5 µg m-3 before the emission adjustment. After the adjustment, the normalized mean error of the daily mean EC concentration decreased from 48 % to 22 % at ground monitor locations. We found that the EC simulation results were improved at high altitudes, and the contribution of the upwind areas was greater than that of the downwind areas for EC concentrations downwind with or without emission adjustment. This implies that collaborating with upwind regions is essential to alleviate high EC concentrations in downwind areas. The developed emission adjustment approach can be used for any upwind or downwind area when transboundary air pollution mitigation is needed because it provides better reproducibility of the most recent air quality through modeling with improved emission data.


Subject(s)
Air Pollutants , Air Pollution , United States , Air Pollutants/analysis , Particulate Matter/analysis , Vehicle Emissions/analysis , Reproducibility of Results , Environmental Monitoring/methods , Air Pollution/analysis , Carbon/analysis , Asia
2.
Sci Rep ; 10(1): 22112, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33335171

ABSTRACT

In January 2020, anthropogenic emissions in Northeast Asia reduced due to the COVID-19 outbreak. When outdoor activities of the public were limited, PM2.5 concentrations in China and South Korea between February and March 2020 reduced by - 16.8 µg/m3 and - 9.9 µg/m3 respectively, compared with the average over the previous three years. This study uses air quality modeling and observations over the past four years to separate the influence of reductions in anthropogenic emissions from meteorological changes and emission control policies on this PM2.5 concentration change. Here, we show that the impacts of anthropogenic pollution reduction on PM2.5 were found to be approximately - 16% in China and - 21% in South Korea, while those of meteorology and emission policies were - 7% and - 8% in China, and - 5% and - 4% in South Korea, respectively. These results show that the influence on PM2.5 concentration differs across time and region and according to meteorological conditions and emission control policies. Finally, the influence of reductions in anthropogenic emissions was greater than that of meteorological conditions and emission policies during COVID-19 period.


Subject(s)
Air Pollution/legislation & jurisprudence , COVID-19/prevention & control , Environmental Monitoring/legislation & jurisprudence , Meteorology/legislation & jurisprudence , Particulate Matter/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/analysis , China , Environmental Pollution/prevention & control , Humans , Republic of Korea , SARS-CoV-2/pathogenicity , Vehicle Emissions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL