Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Genet Metab ; 140(1-2): 107715, 2023.
Article in English | MEDLINE | ID: mdl-37907381

ABSTRACT

Accurate determination of the clinical significance of genetic variants is critical to the integration of genomics in medicine. To facilitate this process, the NIH-funded Clinical Genome Resource (ClinGen) has assembled Variant Curation Expert Panels (VCEPs), groups of experts and biocurators which provide gene- and disease- specifications to the American College of Medical Genetics & Genomics and Association for Molecular Pathology's (ACMG/AMP) variation classification guidelines. With the goal of classifying the clinical significance of GAA variants in Pompe disease (Glycogen storage disease, type II), the ClinGen Lysosomal Diseases (LD) VCEP has specified the ACMG/AMP criteria for GAA. Variant classification can play an important role in confirming the diagnosis of Pompe disease as well as in the identification of carriers. Furthermore, since the inclusion of Pompe disease on the Recommended Uniform Screening Panel (RUSP) for newborns in the USA in 2015, the addition of molecular genetic testing has become an important component in the interpretation of newborn screening results, particularly for asymptomatic individuals. To date, the LD VCEP has submitted classifications and supporting data on 243 GAA variants to public databases, specifically ClinVar and the ClinGen Evidence Repository. Here, we describe the ACMG/AMP criteria specification process for GAA, an update of the GAA-specific variant classification guidelines, and comparison of the ClinGen LD VCEP's GAA variant classifications with variant classifications submitted to ClinVar. The LD VCEP has added to the publicly available knowledge on the pathogenicity of variants in GAA by increasing the number of expert-curated GAA variants present in ClinVar, and aids in resolving conflicting classifications and variants of uncertain clinical significance.


Subject(s)
Genetic Variation , Glycogen Storage Disease Type II , Infant, Newborn , Humans , United States , Genetic Testing/methods , Glycogen Storage Disease Type II/diagnosis , Glycogen Storage Disease Type II/genetics , Genome, Human , Genomics/methods
2.
Am J Hum Genet ; 110(9): 1496-1508, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37633279

ABSTRACT

Predicted loss of function (pLoF) variants are often highly deleterious and play an important role in disease biology, but many pLoF variants may not result in loss of function (LoF). Here we present a framework that advances interpretation of pLoF variants in research and clinical settings by considering three categories of LoF evasion: (1) predicted rescue by secondary sequence properties, (2) uncertain biological relevance, and (3) potential technical artifacts. We also provide recommendations on adjustments to ACMG/AMP guidelines' PVS1 criterion. Applying this framework to all high-confidence pLoF variants in 22 genes associated with autosomal-recessive disease from the Genome Aggregation Database (gnomAD v.2.1.1) revealed predicted LoF evasion or potential artifacts in 27.3% (304/1,113) of variants. The major reasons were location in the last exon, in a homopolymer repeat, in a low proportion expressed across transcripts (pext) scored region, or the presence of cryptic in-frame splice rescues. Variants predicted to evade LoF or to be potential artifacts were enriched for ClinVar benign variants. PVS1 was downgraded in 99.4% (162/163) of pLoF variants predicted as likely not LoF/not LoF, with 17.2% (28/163) downgraded as a result of our framework, adding to previous guidelines. Variant pathogenicity was affected (mostly from likely pathogenic to VUS) in 20 (71.4%) of these 28 variants. This framework guides assessment of pLoF variants beyond standard annotation pipelines and substantially reduces false positive rates, which is key to ensure accurate LoF variant prediction in both a research and clinical setting.


Subject(s)
Inheritance Patterns , Humans , Exons , Uncertainty
3.
medRxiv ; 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36945502

ABSTRACT

Predicted loss of function (pLoF) variants are highly deleterious and play an important role in disease biology, but many of these variants may not actually result in loss-of-function. Here we present a framework that advances interpretation of pLoF variants in research and clinical settings by considering three categories of LoF evasion: (1) predicted rescue by secondary sequence properties, (2) uncertain biological relevance, and (3) potential technical artifacts. We also provide recommendations on adjustments to ACMG/AMP guidelines's PVS1 criterion. Applying this framework to all high-confidence pLoF variants in 22 autosomal recessive disease-genes from the Genome Aggregation Database (gnomAD, v2.1.1) revealed predicted LoF evasion or potential artifacts in 27.3% (304/1,113) of variants. The major reasons were location in the last exon, in a homopolymer repeat, in low per-base expression (pext) score regions, or the presence of cryptic splice rescues. Variants predicted to be potential artifacts or to evade LoF were enriched for ClinVar benign variants. PVS1 was downgraded in 99.4% (162/163) of LoF evading variants assessed, with 17.2% (28/163) downgraded as a result of our framework, adding to previous guidelines. Variant pathogenicity was affected (mostly from likely pathogenic to VUS) in 20 (71.4%) of these 28 variants. This framework guides assessment of pLoF variants beyond standard annotation pipelines, and substantially reduces false positive rates, which is key to ensure accurate LoF variant prediction in both a research and clinical setting.

4.
J Endocr Soc ; 7(3): bvac182, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36655002

ABSTRACT

Given the close anatomical and physiological links between the exocrine and endocrine pancreas, diseases of 1 compartment often affect the other through mechanisms that remain poorly understood. Pancreatitis has been associated with both type 1 and type 2 diabetes, but its association with monogenic diabetes is unknown. Patients heterozygous for pathogenic CFTR variants are cystic fibrosis carriers and have been reported to have an increased risk of acute pancreatitis. We describe a 12-year-old patient with monogenic neonatal diabetes due to a pathogenic heterozygous paternally inherited mutation of the insulin gene (INS), c.94 G > A (p.Gly32Ser), who experienced 3 recurrent episodes of acute pancreatitis over 7 months in conjunction with poor glycemic control, despite extensive efforts to improve glycemic control in the past 4 years. Intriguingly, the maternal side of the family has an extensive history of adult-onset pancreatitis consistent with autosomal dominant inheritance and the proband is heterozygous for a maternally inherited, CFTR variant c.3909C > G (p.Asn1303Lys). Paternally inherited monogenic neonatal diabetes may have promoted earlier age-of-onset of pancreatitis in this pediatric patient compared to maternal relatives with adult-onset acute pancreatitis. Further study is needed to clarify how separate pathophysiologies associated with INS and CFTR mutations influence interactions between the endocrine and exocrine pancreas.

SELECTION OF CITATIONS
SEARCH DETAIL
...