Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202404758, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818571

ABSTRACT

Electrolysis of bicarbonate-containing CO2 capture solutions is a promising approach towards achieving low-cost carbon-neutral chemicals production. However, the parasitic bicarbonate-mediated hydrogen evolution reaction (HER) and electrode instability in the presence of trace impurities remain major obstacles to overcome. This work demonstrates that the combined use of titanium dioxide (TiO2) overlayers with the chelating agent ethylene diamine tetra-acetic acid (EDTA) significantly enhances the selectivity and stability of Ag-based electrocatalysts for bicarbonate electrolysis. The amorphous TiO2 overlayers suppress the HER by over 50% at potentials more negative than -0.7 V vs. RHE, increasing the CO faradaic efficiency (FE) by 33% (relative). In situ surface-enhanced Raman spectroscopy (SERS) measurements reveal the absence of near-surface bicarbonate species and an abundance of CO2 reduction intermediates at the Ag|TiO2 buried interface, suggesting that the overlayers suppress HER by blocking bicarbonate ions from reaching the buried active sites. In accelerated degradation tests with 5 ppm of Fe(III) impurity, the addition of EDTA allows stable CO production with >47% FE, while the electrodes rapidly deactivate in the absence of EDTA. This work highlights the use of TiO2 overlayers for enhancing the CO:H2 ratio while simultaneously protecting electrocatalysts from impurities likely to be present in "open" carbon capture systems.

2.
Chem Rev ; 123(23): 12795-13208, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37967475

ABSTRACT

Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.

3.
ACS Appl Mater Interfaces ; 14(37): 42153-42170, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36084243

ABSTRACT

Alkaline water electrolysis, a promising technology for clean energy storage, is constrained by extrinsic factors in addition to intrinsic electrocatalytic activity. To begin to compare between catalytic materials for electrolysis applications, these extrinsic factors must first be understood and controlled. Here, we modify extrinsic electrode properties and study the effects of bubble release to examine how the electrode and surface design impact the performance of water electrolysis. We fabricate robust and cost-effective electrodes through a sequential three-dimensional (3D) printing and metal deposition procedure. Through a systematic assessment of the deposition procedure, we confirm the close relationship between extrinsic electrode properties (i.e., wettability, surface roughness, and electrochemically active surface area) and electrochemical performance. Modifying the electrode geometry, size, and electrolyte flow rate results in an overpotential decrease and different bubble diameters and lifetimes for the hydrogen (HER) and oxygen evolution reactions (OER). Hence, we demonstrate the essential role of the electrode architecture and forced electrolyte convection on bubble release. Additionally, we confirm the suitability of ordered, Ni-coated 3D porous structures by evaluating the HER/OER performance, bubble dissipation, and long-term stability. Finally, we utilize the 3D porous electrode as a support for studying a benchmark NiFe electrocatalyst, confirming the robustness and effectiveness of 3D-printed electrodes for testing electrocatalytic materials while extrinsic properties are precisely controlled. Overall, we demonstrate that tailoring electrode architectures and surface properties result in precise tuning of extrinsic electrode properties, providing more reproducible and comparable conditions for testing the efficiency of electrode materials for water electrolysis.

4.
ACS Nano ; 15(2): 3468-3480, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33512156

ABSTRACT

To achieve practically high electrocatalytic performance for the oxygen evolution reaction (OER), the active surface area should be maximized without severely compromising electron and mass transport throughout the catalyst electrode. Though the importance of electron and mass transport has been studied using low surface area catalysts under low current densities (∼tens of mA/cm2), the transport properties of large surface area catalysts under high operating current densities (∼500 mA/cm2) for practical OER catalysis have rarely been explored. Herein, three-dimensional (3D) hierarchically porous anodized nickel foams (ANFs) with large and variable surface areas were synthesized via electrochemical anodization of 3D nickel foam and applied as OER electrocatalysts in Fe-free and unpurified KOH electrolytes. Using Fe-free and in situ Fe-doped ANF that were prepared in Fe-free and unpurified electrolytes, respectively, we investigated the interdependent effects of active surface area and transport properties on OER activity under practically high current densities. While activity increased linearly with active surface area for Fe-free ANF, the activity of Fe-doped ANF showed a nonlinear increase with active surface area due to lower electrocatalytic activity enhancement. Detailed investigations on the possible factors (Fe incorporation, mass transport, and electron transport) identified that electron transport limitations played the major role in restricting the activity enhancement with increasing active surface area for Fe-doped ANF, although Fe-doped ANF has electron transport properties better than those of Fe-free ANF. This study exemplifies the growing significance of electron transport properties in large surface area catalysts, especially those with superb intrinsic catalytic activity and high operating current density.

5.
ACS Appl Mater Interfaces ; 10(10): 8611-8620, 2018 Mar 14.
Article in English | MEDLINE | ID: mdl-29485266

ABSTRACT

Dye-sensitized solar cells (DSCs) are promising solar energy conversion devices with aesthetically favorable properties such as being colorful and having transparent features. They are also well-known for high and reliable performance even under ambient lighting, and these advantages distinguish DSCs for applications in window-type building-integrated photovoltaics (BIPVs) that utilize photons from both lamplight and sunlight. Therefore, investigations on bifacial DSCs have been done intensively, but further enhancement in performance under back-illumination is essential for practical window-BIPV applications. In this research, highly efficient bifacial DSCs were prepared by a combination of electropolymerized poly(3,4-ethylenedioxythiphene) (PEDOT) counter electrodes (CEs) and cobalt bipyridine redox ([Co(bpy)3]3+/2+) electrolyte, both of which manifested superior transparency when compared with conventional Pt and iodide counterparts, respectively. Keen electrochemical analyses of PEDOT films verified that superior electrical properties were achievable when the thickness of the film was reduced, while their high electrocatalytic activities were unchanged. The combination of the PEDOT thin film and [Co(bpy)3]3+/2+ electrolyte led to an unprecedented power conversion efficiency among bifacial DSCs under back-illumination, which was also over 85% of that obtained under front-illumination. Furthermore, the advantage of the electropolymerization process, which does not require an elevation of temperature, was demonstrated by flexible bifacial DSC applications.

6.
Adv Sci (Weinh) ; 5(1): 1700601, 2018 01.
Article in English | MEDLINE | ID: mdl-29375978

ABSTRACT

Demands for sustainable production of hydrogen are rapidly increasing because of environmental considerations for fossil fuel consumption and development of fuel cell technologies. Thus, the development of high-performance and economical catalysts has been extensively investigated. In this study, a nanoporous Mo carbide electrode is prepared using a top-down electrochemical process and it is applied as an electrocatalyst for the hydrogen evolution reaction (HER). Anodic oxidation of Mo foil followed by heat treatment in a carbon monoxide (CO) atmosphere forms a nanostructured Mo carbide with excellent interconnections, and these structural characteristics lead to high activity and durability when applied to the HER. Additionally, characteristic behavior of Mo is observed; metallic Mo nanosheets form during electrochemical anodization by exfoliation along the (110) planes. These nanosheets are viable for chemical modification, indicating their feasibility in various applications. Moreover, the role of carbon shells is investigated on the surface of the electrocatalysts, whereby it is suggested that carbon shells serve as a mechanical barrier against the oxidative degradation of catalysts that accompanies unavoidable volume expansion.

7.
ACS Appl Mater Interfaces ; 9(47): 41303-41313, 2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29094595

ABSTRACT

Nitrogen-doped porous carbon materials have been highlighted as promising alternatives to high-cost platinum in various electrochemical energy applications. However, protocols to generate effective pore structure are still challenging, which hampers mass production and utilization of carbon materials. Here, we suggest a facile and effective method for hierarchical porous carbon by a single-step carbonization of coffee waste (CW) with ZnCl2. The CW, which is one of the most earth-abundant organic waste, can be successfully converted to nitrogen-doped porous carbon. It shows outstanding oxygen reduction activity and durability comparable to the state-of-the-art platinum, and the half-wave potential is also comparable to the best metal-free electrocatalysts in alkaline media. Finally, we apply it to counter electrode of dye-sensitized solar cell, whose photovoltaic efficiency surpasses the one made with conventional platinum electrode. We demonstrate the feasibility of our strategies for highly efficient, cheap, and environment-friendly electrocatalyst to replace platinum in various electrochemical energy applications.

8.
Nanoscale ; 9(17): 5413-5424, 2017 May 04.
Article in English | MEDLINE | ID: mdl-28300257

ABSTRACT

Photoelectrochemical (PEC) cells are promising tools for renewable and sustainable solar energy conversion. Currently, their inadequate performance and high cost of the noble metals used in the electrocatalytic counter electrode have postponed the practical use of PEC cells. In this study, we report the electrochemical synthesis of nanoporous tungsten carbide and its application as a reduction catalyst in PEC cells, namely, dye-sensitized solar cells (DSCs) and PEC water splitting cells, for the first time. The method employed in this study involves the anodization of tungsten foil followed by post heat treatment in a CO atmosphere to produce highly crystalline tungsten carbide film with an interconnected nanostructure. This exhibited high catalytic activity for the reduction of cobalt bipyridine species, which represent state-of-the-art redox couples for DSCs. The performance of tungsten carbide even surpassed that of Pt, and a substantial increase (∼25%) in energy conversion efficiency was achieved when Pt was substituted by tungsten carbide film as the counter electrode. In addition, tungsten carbide displayed decent activity as a catalyst for the hydrogen evolution reaction, suggesting the high feasibility for its utilization as a cathode material for PEC water splitting cells, which was also verified in a two-electrode water photoelectrolyzer.

SELECTION OF CITATIONS
SEARCH DETAIL
...