Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Vis Comput Graph ; 30(1): 1161-1171, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37871083

ABSTRACT

We introduce two novel visualization designs to support practitioners in performing identification and discrimination tasks on large value ranges (i.e., several orders of magnitude) in time-series data: (1) The order of magnitude horizon graph, which extends the classic horizon graph; and (2) the order of magnitude line chart, which adapts the log-line chart. These new visualization designs visualize large value ranges by explicitly splitting the mantissa m and exponent e of a value v=m·10e. We evaluate our novel designs against the most relevant state-of-the-art visualizations in an empirical user study. It focuses on four main tasks commonly employed in the analysis of time-series and large value ranges visualization: identification, discrimination, estimation, and trend detection. For each task we analyze error, confidence, and response time. The new order of magnitude horizon graph performs better or equal to all other designs in identification, discrimination, and estimation tasks. Only for trend detection tasks, the more traditional horizon graphs reported better performance. Our results are domain-independent, only requiring time-series data with large value ranges.

2.
IEEE Trans Vis Comput Graph ; 28(6): 2376-2387, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35157586

ABSTRACT

Cartograms are popular for visualizing numerical data for administrative regions in thematic maps. When there are multiple data values per region (over time or from different datasets) shown as animated or juxtaposed cartograms, preserving the viewer's mental map in terms of stability between multiple cartograms is another important criterion alongside traditional cartogram criteria such as maintaining adjacencies. We present a method to compute stable stable Demers cartograms, where each region is shown as a square scaled proportionally to the given numerical data and similar data yield similar cartograms. We enforce orthogonal separation constraints using linear programming, and measure quality in terms of keeping adjacent regions close (cartogram quality) and using similar positions for a region between the different data values (stability). Our method guarantees the ability to connect most lost adjacencies with minimal-length planar orthogonal polylines. Experiments show that our method yields good quality and stability on multiple quality criteria.

3.
IEEE Trans Vis Comput Graph ; 27(2): 1236-1246, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33026995

ABSTRACT

Grid maps are spatial arrangements of simple tiles (often squares or hexagons), each of which represents a spatial element. They are an established, effective way to show complex data per spatial element, using visual encodings within each tile ranging from simple coloring to nested small-multiples visualizations. An effective grid map is coherent with the underlying geographic space: the tiles maintain the contiguity, neighborhoods and identifiability of the corresponding spatial elements, while the grid map as a whole maintains the global shape of the input. Of particular importance are salient local features of the global shape which need to be represented by tiles assigned to the appropriate spatial elements. State-of-the-art techniques can adequately deal only with simple cases, such as close-to-uniform spatial distributions or global shapes that have few characteristic features. We introduce a simple fully-automated 3-step pipeline for computing coherent grid maps. Each step is a well-studied problem: shape decomposition based on salient features, tile-based Mosaic Cartograms, and point-set matching. Our pipeline is a seamless composition of existing techniques for these problems and results in high-quality grid maps. We provide an implementation, demonstrate the efficacy of our approach on various complex datasets, and compare it to the state-of-the-art.

4.
IEEE Trans Vis Comput Graph ; 24(1): 729-738, 2018 01.
Article in English | MEDLINE | ID: mdl-28866573

ABSTRACT

Treemaps are a popular tool to visualize hierarchical data: items are represented by nested rectangles and the area of each rectangle corresponds to the data being visualized for this item. The visual quality of a treemap is commonly measured via the aspect ratio of the rectangles. If the data changes, then a second important quality criterion is the stability of the treemap: how much does the treemap change as the data changes. We present a novel stable treemapping algorithm that has very high visual quality. Whereas existing treemapping algorithms generally recompute the treemap every time the input changes, our algorithm changes the layout of the treemap using only local modifications. This approach not only gives us direct control over stability, but it also allows us to use a larger set of possible layouts, thus provably resulting in treemaps of higher visual quality compared to existing algorithms. We further prove that we can reach all possible treemap layouts using only our local modifications. Furthermore, we introduce a new measure for stability that better captures the relative positions of rectangles. We finally show via experiments on real-world data that our algorithm outperforms existing treemapping algorithms also in practice on either visual quality and/or stability. Our algorithm scores high on stability regardless of whether we use an existing stability measure or our new measure.

SELECTION OF CITATIONS
SEARCH DETAIL
...