Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Type of study
Publication year range
1.
Nanoscale Adv ; 6(4): 1039-1058, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38356624

ABSTRACT

Compared to other known materials, metal-organic frameworks (MOFs) have the highest surface area and the lowest densities; as a result, MOFs are advantageous in numerous technological applications, especially in the area of photocatalysis. Photocatalysis shows tantalizing potential to fulfill global energy demands, reduce greenhouse effects, and resolve environmental contamination problems. To exploit highly active photocatalysts, it is important to determine the fate of photoexcited charge carriers and identify the most decisive charge transfer pathway. Methods to modulate charge dynamics and manipulate carrier behaviors may pave a new avenue for the intelligent design of MOF-based photocatalysts for widespread applications. By summarizing the recent developments in the modulation of interfacial charge dynamics for MOF-based photocatalysts, this minireview can deliver inspiring insights to help researchers harness the merits of MOFs and create versatile photocatalytic systems.

2.
Nat Commun ; 15(1): 413, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195553

ABSTRACT

Near infrared energy remains untapped toward the maneuvering of entire solar spectrum harvesting for fulfilling the nuts and bolts of solar hydrogen production. We report the use of Au@Cu7S4 yolk@shell nanocrystals as dual-plasmonic photocatalysts to achieve remarkable hydrogen production under visible and near infrared illumination. Ultrafast spectroscopic data reveal the prevalence of long-lived charge separation states for Au@Cu7S4 under both visible and near infrared excitation. Combined with the advantageous features of yolk@shell nanostructures, Au@Cu7S4 achieves a peak quantum yield of 9.4% at 500 nm and a record-breaking quantum yield of 7.3% at 2200 nm for hydrogen production in the absence of additional co-catalysts. The design of a sustainable visible- and near infrared-responsive photocatalytic system is expected to inspire further widespread applications in solar fuel generation. In this work, the feasibility of exploiting the localized surface plasmon resonance property of self-doped, nonstoichiometric semiconductor nanocrystals for the realization of wide-spectrum-driven photocatalysis is highlighted.

3.
J Phys Chem B ; 127(29): 6585-6595, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37439482

ABSTRACT

A dimeric molecule, di-5(3FM-C4T), with fluoro-substituted mesogenic cores composed of three-aromatic rings and linked by a pentamethylene spacer is prepared. Di-5(3FM-C4T) forms the ferroelectric nematic (NF), ferroelectric smectic-A (SmAPF), and polar isotropic (IsoP) phases. The NF phase is composed of molecules in U-shaped conformation that behave like polar rod-like molecules. The reversal spontaneous polarization (Ps) is approximately 8 µC cm-2, which is extremely large and reflects the huge dipole moment (11.2 D) of the one-side mesogenic core. On the other hand, the SmAPF phase is formed by bent-shaped molecules. The NF-SmAPF phase transition thus follows the conformational change of molecules. The reversal Ps of the SmAPF phase is around 4 µC cm-2, which is half of that in the NF phase, and this is an expected value from the bent shape of the molecules. It is interesting that the highest temperature IsoP phase still exhibits the polar structure and possibly retains some polar aggregation of molecules in small domains. The three polar phases exhibit the dielectric mode due to the collective polarization fluctuation at around 100 Hz, giving the high dielectric constant over 8000.

4.
World J Microbiol Biotechnol ; 39(10): 255, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37474876

ABSTRACT

We previously isolated a mutant of Saccharomyces cerevisiae strain 85_9 whose glycerol assimilation was improved through adaptive laboratory evolution. To investigate the mechanism for this improved glycerol assimilation, genome resequencing of the 85_9 strain was performed, and the mutations in the open reading frame of HOG1, SIR3, SSB2, and KGD2 genes were found. Among these, a frameshift mutation in the HOG1 open reading frame was responsible for the improved glycerol assimilation ability of the 85_9 strain. Moreover, the HOG1 gene disruption improved glycerol assimilation. As HOG1 encodes a mitogen-activated protein kinase (MAPK), which is responsible for the signal transduction cascade in response to osmotic stress, namely the high osmolarity glycerol (HOG) pathway, we investigated the effect of the disruption of PBS2 gene encoding MAPK kinase for Hog1 MAPK on glycerol assimilation, revealing that PBS2 disruption can increase glycerol assimilation. These results indicate that loss of function of Hog1 improves glycerol assimilation in S. cerevisiae. However, single disruption of the SSK2, SSK22 and STE11 genes encoding protein kinases responsible for Pbs2 phosphorylation in the HOG pathway did not increase glycerol assimilation, while their triple disruption partially improved glycerol assimilation in S. cerevisiae. In addition, the HOG1 frameshift mutation did not improve glycerol assimilation in the STL1-overexpressing RIM15 disruptant strain, which was previously constructed with high glycerol assimilation ability. Furthermore, the effectiveness of the HOG1 disruptant as a bioproduction host was validated, indicating that the HOG1 CYB2 double disruptant can produce L-lactic acid from glycerol.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Glycerol/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Phosphorylation , Osmotic Pressure , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism
5.
Angew Chem Int Ed Engl ; 62(40): e202307343, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37294142

ABSTRACT

Imine-based covalent organic frameworks (COFs) are crystalline porous materials with prospective uses in various devices. However, general bulk synthetic methods usually produce COFs as powders that are insoluble in most of the common organic solvents, arising challenges for the subsequent molding and fixing of these materials on substrates. Here, we report a novel synthetic methodology that utilizes an electrogenerated acid (EGA), which is produced at an electrode surface by electrochemical oxidation of a suitable precursor, acting as an effective Brønsted acid catalyst for imine bond formation from the corresponding amine and aldehyde monomers. Simultaneously, it provides the corresponding COF film deposited on the electrode surface. The COF structures obtained with this method exhibited high crystallinities and porosities, and the film thickness could be controlled. Furthermore, such process was applied for the synthesis of various imine-based COFs, including a three-dimensional (3D) COF structure.

6.
Sensors (Basel) ; 23(8)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37112472

ABSTRACT

Miniaturized sensors possess many advantages, such as rapid response, easy chip integration, a possible lower concentration of target compound detection, etc. However, a major issue reported is a low signal response. In this study, a catalyst, the atomic gold clusters of Aun where n = 2, was decorated at a platinum/polyaniline (Pt/PANI) working electrode to enhance the sensitivity of butanol isomers gas measurement. Isomer quantification is challenging because this compound has the same chemical formula and molar mass. Furthermore, to create a tiny sensor, a microliter of room-temperature ionic liquid was used as an electrolyte. The combination of the Au2 clusters decorated Pt/PANI and room temperature ionic liquid with several fixed electrochemical potentials was explored to obtain a high solubility of each analyte. According to the results, the presence of Au2 clusters increased the current density due to electrocatalytic activity compared to the electrode without Au2 clusters. In addition, the Au2 clusters on the modified electrode had a more linear concentration dependency trend than the modified electrode without atomic gold clusters. Finally, the separation among butanol isomers was enhanced using different combination of room-temperature ionic liquids and fixed potentials.

7.
Materials (Basel) ; 16(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36984256

ABSTRACT

Polyethylene terephthalate (PET) is known to be highly inert, and this makes it difficult to be metallized. In addition, Pt electroless plating is rarely reported in the metallization of polymers. In this study, the metallization of biocompatible Pt metal is realized by supercritical CO2 (sc-CO2)-assisted electroless plating. The catalyst precursor used in the sc-CO2 catalyzation step is an organometallic compound, palladium (II) acetylacetonate (Pd(acac)2). The electrical resistance is evaluated, and a tape adhesion test is utilized to demonstrate intactness of the Pt layer on the PET film. The electrical resistance of the Pt/PET with 60 min of the Pt deposition time remains at a low level of 1.09 Ω after the adhesion test, revealing positive effects of the sc-CO2 catalyzation step. A tensile test is conducted to evaluate the mechanical strength of the Pt/PET. In-situ electrical resistances of the specimen are monitored during the tensile test. The fracture strength is determined from the stress value when the short circuit occurred. The fracture strength is 33.9 MPa for a specimen with 30 min of the Pt deposition time. As the Pt deposition time increases to 45 min and 60 min, the fracture strengths reach 52.3 MPa and 65.9 MPa, respectively. The promoted fracture strength and the decent electrical conductivity demonstrate the advantages toward biomedical devices.

8.
J Phys Chem B ; 126(40): 8119-8127, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36194857

ABSTRACT

Three kinds of bent-shaped dimeric molecules are synthesized by fluorine substitution of C16 molecules, and influences of the substitution on the polar smectic phases are examined. The fluorine-substituted C16 molecules form the SmAPF and SmCAPA phases. The transition temperatures decrease by 20-30 °C without significantly changing the temperature span of the smectic phase, and the switching rates to the ferroelectric state become 5-10 µs, which are fairly shorter than 250 µs of C16. These behaviors are considered to be caused by the decrease in the intermolecular force and the decrease in the viscosity. The anchoring behavior also appears to be different. On the indium tin oxide (ITO)-coated cell, the fluorine-substituted molecules are homogeneously aligned with the bent (polar) axes perpendicular to the surface, while the bent axes of ordinary bent-shaped molecules lie parallel to the surface. This may be attributable to the repulsion between the fluorine and ITO electrodes. Further, the fluorine substitution can increase the dipole moment of the molecule. The largest dipole moment obtained is 7.94 D, and this leads to a huge reversal polarization of 2.42 µC cm-2, which is much higher compared to those reported in the bent-shaped molecules.


Subject(s)
Liquid Crystals , Electrodes , Fluorine , Polymers , Temperature
9.
J Phys Chem B ; 126(26): 4967-4976, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35749271

ABSTRACT

This study reports the electric switching behaviors and dielectric properties of the ferroelectric smectic-A (SmAPF), anti-ferroelectric smectic-A (SmAPA), anti-ferroelectric SmCAPA, and smectic-A (SmA) phases formed by mixing the bent-shaped dimeric molecules, α,ω-bis(4-alkoxyanilinebenzylidene-4'-carbonyloxy)pentanes. These four phases each show characteristic features. The SmAPF shows a low threshold electric field for ferroelectric switching and a large dielectric strength due to the collective fluctuation mode of dipoles at around 500 Hz. Both the threshold electric field and dielectric strength are strongly dependent on the cell thickness. The threshold field decreases to 0.1 V µm-1, and the dielectric strength increases up to a huge value of 10,000 as the cell thickness increases up to 80 µm. The SmAPA also shows a similar collective mode at around 2 kHz with a relatively small dielectric strength (around 200), which may be induced by the anti-phase rotation of dipoles in adjacent layers. In these collective modes, the dielectric strength is found to be inversely proportional to the switching threshold field. On the other hand, another anti-ferroelectric SmCAPA as well as the paraelectric SmA show only the non-collective mode (i.e., rotational relaxation of individual molecules around their short axes) at a high frequency of around 100 kHz.

10.
Materials (Basel) ; 14(4)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572043

ABSTRACT

Porous polymers have been synthesized by an aza-Michael addition reaction of a multi-functional acrylamide, N,N',N″,N‴-tetraacryloyltriethylenetetramine (AM4), and hexamethylene diamine (HDA) in H2O without catalyst. Reaction conditions, such as monomer concentration and reaction temperature, affected the morphology of the resulting porous structures. Connected spheres, co-continuous monolithic structures and/or isolated holes were observed on the surface of the porous polymers. These structures were formed by polymerization-induced phase separation via spinodal decomposition or highly internal phase separation. The obtained porous polymers were soft and flexible and not breakable by compression. The porous polymers adsorbed various solvents. An AM4-HDA porous polymer could be plated by Ni using an electroless plating process via catalyzation by palladium (II) acetylacetonate following reduction of Ni ions in a plating solution. The intermediate Pd-catalyzed porous polymer promoted the Suzuki-Miyaura cross coupling reaction of 4-bromoanisole and phenylboronic acid.

11.
Sensors (Basel) ; 20(13)2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32610548

ABSTRACT

Novel sensing materials have been formed by decorating polyaniline conducting polymers with atomic gold clusters where the number of atoms is precisely defined. Such materials exhibit unique electrocatalytic properties of electrooxidation to aliphatic alcohols, although analytes with other functional groups have not been studied. This paper reports a study of cyclic voltammetric patterns obtained with bi-atomic gold nanocomposite response to analytes with other functional groups for sensor applications. Principal component analysis shows separation among normal-propanol, iso-propanol and ethyl formate/ethanol groups. Indirect sensing of ethyl formate is demonstrated by electrooxidation of the product upon hydrolysis in alkaline medium. Voltammograms of ethyl formate are studied in gaseous phases.

12.
Talanta ; 212: 120780, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32113543

ABSTRACT

Along with the rise of diabetes mellitus issue, glucose sensor has become an imperative tool for healthcare. Studies have been widely conducted on electrode materials for glucose sensors; metal nanoparticles and/or oxide particles in its nano-size are reported to exhibit remarkable electrocatalytic activities in the non-enzymatic glucose sensors. However, the decoration processes of metal nanoparticles or nano-sized oxides are known to be tedious and time-consuming. In addition, the processes usually result in great amount of waste solution emission. In this study, therefore, an Au nanoparticles (NPs)-TiO2 modified polyaniline (PANI) composite is practiced towards the applications of non-enzymatic glucose sensors, by using a facile and time-saving thermal reduction and by electrodeposition techniques with low waste solution emission. Au NPs, which is modified with TiO2 nanoparticles in its optimized amount, performs the highest electrocatalytic activity to the oxidation of glucose in alkaline solution. The stability of Au NPs-TiO2/PANI is superior to those of most reported results over 70 days. The sensitivity and detection limit are 379.8 µA mM-1 cm-2 and 0.15 µM, respectively. High selectivity of Au NPs-TiO2/PANI is also confirmed by the interference test. Spill-over effect of OH- between Au NPs and TiO2, which is the main reason for the improved catalytic activity, is described in this study.


Subject(s)
Aniline Compounds/chemistry , Blood Glucose/analysis , Electrochemical Techniques/instrumentation , Metal Nanoparticles/chemistry , Titanium/chemistry , Blood Glucose/chemistry , Electrochemical Techniques/methods , Electrodes , Gold/chemistry , Humans , Limit of Detection , Oxidation-Reduction , Reproducibility of Results
13.
Materials (Basel) ; 13(1)2019 Dec 25.
Article in English | MEDLINE | ID: mdl-31881752

ABSTRACT

In this work, micro-compression tests are performed at various temperatures with Ti-27Nb (at.%) single crystalline pillars to investigate anisotropic deformation behavior, including the shape memory effect. In non-tapered single-crystal pillars with loading directions parallel to [001], [011], and [111], transformation strain and stress show orientation dependence. [001]-oriented micropillars with aspect ratios of 2 and 1.5 demonstrate temperature-dependent transformation stress during micro-compression at various temperatures. Although more stress is required to induce martensite transformation in the pillar with the lower aspect ratio, the temperature dependence of ~1.8 MPa/K observed in both pillars is in good agreement with that of bulk Ti-27Nb.

14.
ACS Appl Mater Interfaces ; 10(27): 22997-23008, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29664283

ABSTRACT

Poor kinetics of hole transportation at the electrode/electrolyte interface is regarded as a primary cause for the mediocre performance of n-type TiO2 photoelectrodes. By adopting nanotubes as the electrode backbone, light absorption and carrier collection can be spatially decoupled, allowing n-type TiO2, with its short hole diffusion length, to maximize the use of the available photoexcited charge carriers during operation in photoelectrochemical (PEC) water splitting. Here, we presented a delicate electrochemical anodization process for the preparation of quaternary Ti-Nb-Ta-Zr-O mixed-oxide (denoted as TNTZO) nanotube arrays and demonstrated their utility in PEC water splitting. The charge-transfer dynamics for the electrodes was investigated using time-resolved photoluminescence, electrochemical impedance spectroscopy, and the decay of open-circuit voltage analysis. Data reveal that the superior photoactivity of TNTZO over pristine TiO2 originated from the introduction of Nd, Ta, and Zr elements, which enhanced the amount of accessible charge carriers, modified the electronic structure, and improved the hole injection kinetics for expediting water splitting. By modulating the water content of the electrolyte employed in the anodization process, the wall thickness of the grown TNTZO nanotubes can be reduced to a size smaller than that of the depletion layer thickness, realizing a fully depleted state for charge carriers to further advance the PEC performance. Hydrogen evolution tests demonstrate the practical efficacy of TNTZO for realizing solar hydrogen production. Furthermore, with the composition complexity and fully depleted band structure, the present TNTZO nanotube arrays may offer a feasible and universal platform for the loading of other semiconductors to construct a sophisticated heterostructure photoelectrode paradigm, in which the photoexcited charge carriers can be entirely utilized for efficient solar-to-fuel conversion.

15.
Sci Rep ; 5: 10993, 2015 Jun 08.
Article in English | MEDLINE | ID: mdl-26051871

ABSTRACT

The development of strong, tough, and damage-tolerant ceramics requires nano/microstructure design to utilize toughening mechanisms operating at different length scales. The toughening mechanisms so far known are effective in micro-scale, then, they require the crack extension of more than a few micrometers to increase the fracture resistance. Here, we developed a micro-mechanical test method using micro-cantilever beam specimens to determine the very early part of resistance-curve of nanocrystalline SiO2 stishovite, which exhibited fracture-induced amorphization. We revealed that this novel toughening mechanism was effective even at length scale of nanometer due to narrow transformation zone width of a few tens of nanometers and large dilatational strain (from 60 to 95%) associated with the transition of crystal to amorphous state. This testing method will be a powerful tool to search for toughening mechanisms that may operate at nanoscale for attaining both reliability and strength of structural materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...