Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 284
Filter
1.
Pestic Biochem Physiol ; 202: 105967, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879344

ABSTRACT

Coumarin is a natural product known for its diverse biological activities. While its antifungal properties in agricultural chemistry have been extensively studied, there is limited research on its antibacterial potential. In this study, we developed several novel coumarin derivatives by combining coumarin with pyridinium salt through molecular hybridization and chemical synthesis. Our findings reveal that most of these derivatives exhibit promising antibacterial activity. Among them, derivative A25 has been identified as the most effective compound based on three-dimensional quantitative structure-activity relationships. It demonstrates significant in vitro and in vivo activity against Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas oryzae pv. oryzicola (Xoc), and Xanthomonas campestris pv. citri (Xac), outperforming the commercially available thiediazole copper. Initial investigations into its mechanism of action suggest that A25 disrupts the cell membranes of Xoc and Xoo, thereby inhibiting bacterial growth. Additionally, A25 enhances the activity of defense enzymes in rice and modulates the expression of proteins related to the pyruvate metabolism pathway. This dual action contributes to rice's resistance against bacterial infestation. We anticipate that this study will serve as a foundation for the development of coumarin-based bactericides.


Subject(s)
Anti-Bacterial Agents , Coumarins , Microbial Sensitivity Tests , Oryza , Xanthomonas , Coumarins/pharmacology , Coumarins/chemical synthesis , Coumarins/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Xanthomonas/drug effects , Oryza/microbiology , Pyridinium Compounds/pharmacology , Pyridinium Compounds/chemistry , Pyridinium Compounds/chemical synthesis , Xanthomonas campestris/drug effects , Drug Design , Salts/pharmacology , Salts/chemistry , Structure-Activity Relationship
2.
Nucleic Acids Res ; 52(W1): W450-W460, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38832633

ABSTRACT

Addressing health and safety crises stemming from various environmental and ecological issues is a core focus of One Health (OH), which aims to balance and optimize the health of humans, animals, and the environment. While many chemicals contribute significantly to our quality of life when properly used, others pose environmental and ecological health risks. Recently, assessing the ecological and environmental risks associated with chemicals has gained increasing significance in the OH world. In silico models may address time-consuming and costly challenges, and fill gaps in situations where no experimental data is available. However, despite their significant contributions, these assessment models are not web-integrated, leading to user inconvenience. In this study, we developed a one-stop comprehensive web platform for freely evaluating the eco-environmental risk of chemicals, named ChemFREE (Chemical Formula Risk Evaluation of Eco-environment, available in http://chemfree.agroda.cn/chemfree/). Inputting SMILES string of chemicals, users will obtain the assessment outputs of ecological and environmental risk, etc. A performance evaluation of 2935 external chemicals revealed that most classification models achieved an accuracy rate above 0.816. Additionally, the $Q_{F1}^2$ metric for regression models ranges from 0.618 to 0.898. Therefore, it will facilitate the eco-environmental risk evaluation of chemicals in the OH world.


Subject(s)
Software , Risk Assessment/methods , Humans , One Health , Environmental Pollutants , Internet , Animals
3.
Int J Biol Macromol ; 268(Pt 1): 131628, 2024 May.
Article in English | MEDLINE | ID: mdl-38631577

ABSTRACT

MicroRNAs (miRNAs) play important roles in plant defense against various pathogens. ε-poly-l-lysine (ε-PL), a natural anti-microbial peptide produced by microorganisms, effectively suppresses tobacco mosaic virus (TMV) infection. To investigate the anti-viral mechanism of ε-PL, the expression profiles of miRNAs in TMV-infected Nicotiana tabacum after ε-PL treatment were analyzed. The results showed that the expression levels of 328 miRNAs were significantly altered by ε-PL. Degradome sequencing was used to identify their target genes. Integrative analysis of miRNAs target genes and gene-enriched GO/KEGG pathways indicated that ε-PL regulates the expression of miRNAs involved in critical pathways of plant hormone signal transduction, host defense response, and plant pathogen interaction. Subsequently, virus induced gene silencing combined with the short tandem targets mimic technology was used to analyze the function of these miRNAs and their target genes. The results indicated that silencing miR319 and miR164 reduced TMV accumulation in N. benthamiana, indicating the essential roles of these miRNAs and their target genes during ε-PL-mediated anti-viral responses. Collectively, this study reveals that microbial source metabolites can inhibit plant viruses by regulating crucial host miRNAs and further elucidate anti-viral mechanisms of ε-PL.


Subject(s)
Gene Expression Regulation, Plant , MicroRNAs , Nicotiana , Polylysine , Tobacco Mosaic Virus , Nicotiana/genetics , Nicotiana/virology , MicroRNAs/genetics , MicroRNAs/metabolism , Polylysine/pharmacology , Transcriptome , Plant Diseases/virology , Plant Diseases/genetics , Antiviral Agents/pharmacology , Gene Expression Profiling
4.
J Agric Food Chem ; 72(18): 10195-10205, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38662962

ABSTRACT

The unsatisfactory effects of conventional bactericides and antimicrobial resistance have increased the challenges in managing plant diseases caused by bacterial pests. Here, we report the successful design and synthesis of benzofuran derivatives using benzofuran as the core skeleton and splicing the disulfide moieties commonly seen in natural substances with antibacterial properties. Most of our developed benzofurans displayed remarkable antibacterial activities to frequently encountered pathogens, including Xanthomonas oryzae pv oryzae (Xoo), Xanthomonas oryzae pv oryzicola (Xoc), and Xanthomonas axonopodis pv citri (Xac). With the assistance of the three-dimensional quantitative constitutive relationship (3D-QSAR) model, the optimal compound V40 was obtained, which has better in vitro antibacterial activity with EC50 values of 0.28, 0.56, and 10.43 µg/mL against Xoo, Xoc, and Xac, respectively, than those of positive control, TC (66.41, 78.49, and 120.36 µg/mL) and allicin (8.40, 28.22, and 88.04 µg/mL). Combining the results of proteomic analysis and enzyme activity assay allows the antibacterial mechanism of V40 to be preliminarily revealed, suggesting its potential as a versatile bactericide in combating bacterial pests in the future.


Subject(s)
Anti-Bacterial Agents , Benzofurans , Disulfides , Drug Design , Microbial Sensitivity Tests , Xanthomonas , Benzofurans/pharmacology , Benzofurans/chemistry , Benzofurans/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Xanthomonas/drug effects , Disulfides/chemistry , Disulfides/pharmacology , Plant Diseases/microbiology , Quantitative Structure-Activity Relationship , Molecular Structure , Xanthomonas axonopodis/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Oryza/microbiology , Oryza/chemistry
5.
Adv Sci (Weinh) ; 11(19): e2309343, 2024 May.
Article in English | MEDLINE | ID: mdl-38477505

ABSTRACT

The control of potato virus Y (PVY) induced crop failure is a challengeable issue in agricultural chemistry. Although many anti-PVY agents are designed to focus on the functionally important coat protein (CP) of virus, how these drugs act on CP to inactivate viral pathogenicity, remains largely unknown. Herein, a PVY CP inhibitor -3j (S) is disclosed, which is accessed by developing unusually efficient (up to 99% yield) and chemo-selective (> 99:1 er in most cases) carbene-catalyzed [3+4] cycloaddition reactions. Compound -3j bears a unique arylimidazole-fused diazepine skeleton and shows chirality-preferred performance against PVY. In addition, -3j (S) as a mediator allows ARG191 (R191) of CP to be identified as a key amino acid site responsible for intercellular movement of virions. R191 is further demonstrated to be critical for the interaction between PVY CP and the plant functional protein NtCPIP, enabling virions to cross plasmodesmata. This key step can be significantly inhibited through bonding with the -3j (S) to further impair pathogenic behaviors involving systemic infection and particle assembly. The study reveals the in-depth mechanism of action of antiviral agents targeting PVY CP, and contributes to new drug structures and synthetic strategies for PVY management.


Subject(s)
Antiviral Agents , Cycloaddition Reaction , Imidazoles , Antiviral Agents/pharmacology , Imidazoles/pharmacology , Imidazoles/chemistry , Potyvirus/drug effects , Catalysis , Capsid Proteins/metabolism , Capsid Proteins/genetics , Plant Diseases/virology , Methane/analogs & derivatives , Methane/pharmacology , Capsid/drug effects , Capsid/metabolism
6.
J Agric Food Chem ; 72(3): 1444-1453, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38206812

ABSTRACT

1,3,4-Oxadiazole thioethers have shown exciting antibacterial activities; however, the current mechanism of action involving such substances against bacteria is limited to proteomics-mediated protein pathways and differentially expressed gene analysis. Herein, we report a series of novel 1,3,4-oxadiazole thioethers containing a carboxamide/amine moiety, most of which show good in vitro and in vivo bacteriostatic activities. Compounds A10 and A18 were screened through CoMFA models as optimums against Xanthomonas oryzae pv. oryzae (Xoo, EC50 values of 5.32 and 4.63 mg/L, respectively) and Xanthomonas oryzae pv. oryzicola (Xoc, EC50 values of 7.58 and 7.65 mg/L, respectively). Compound A10 was implemented in proteomic techniques and activity-based protein profiling (ABPP) analysis to elucidate the antibacterial mechanism and biochemical targets. The results indicate that A10 disrupts the growth and pathogenicity of Xoc by interfering with pathways associated with bacterial virulence, including the two-component regulation system, flagellar assembly, bacterial secretion system, quorum sensing, ABC transporters, and bacterial chemotaxis. Specifically, the translational regulator (CsrA) and the virulence regulator (Xoc3530) are two effective target proteins of A10. Knocking out the CsrA or Xoc3530 gene in Xoc results in a significant reduction in the motility and pathogenicity of the mutant strains. This study contributes available molecular entities, effective targets, and mechanism basis for the management of rice bacterial diseases.


Subject(s)
Oryza , Oxadiazoles , Xanthomonas , Sulfides/chemistry , Proteomics , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Oryza/microbiology , Plant Diseases/microbiology
7.
Phytopathology ; : PHYTO07230263R, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-37856707

ABSTRACT

Carvacrol expresses a wide range of biological activities, but the studies of its mechanisms focused on bacteria, mainly involving the destruction of the plasma membrane. In this study, carvacrol exhibited strong activities against several phytopathogenic fungi and demonstrated a novel antifungal mechanism against Lasiodiplodia theobromae. RNA sequencing indicated that many genes of L. theobromae hyphae were predominately induced by carvacrol, particularly those involved in replication and transcription. Hyperchromic, hypsochromic, and bathochromic effects in the UV-visible absorption spectrum were observed following titration of calf thymus DNA (ctDNA) and carvacrol, which indicated the formation of a DNA-carvacrol complex. Circular dichroism (CD) spectroscopy indicated that the response of DNA to carvacrol was similar to that of 4',6-diamidino-2-phenylindole (DAPI) but different from that of ethidium bromide (EB), implying the ionic bonds between carvacrol and ctDNA. Fluorescence spectrum (FS) analysis indicated that carvacrol quenched the fluorescence of double-stranded DNA (dsDNA) more than single-stranded DNA, indicating that carvacrol mainly bound to dsDNA. A displacement assay showed that carvacrol reduced the fluorescence intensity of the DNA-DAPI complex through competition with DAPI, but this did not occur for DNA-EB. The FS assay revealed that carvacrol bound to the AAA sequence on the minor groove of ds-oligonucleotides. The hydroxyl of carvacrol was verified to bind to ctDNA through a comparative test in which structural analogs of carvacrol, including thymol and 4-ethyl-1,2-dimethyl, were analyzed. The current study indicated carvacrol can destruct plasma membranes and bind to the minor groove of DNA, inhibiting fungal proliferation by disturbing the stability of dsDNA.

8.
Sci China Life Sci ; 67(2): 391-402, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37987940

ABSTRACT

The prevention and control of rice bacterial leaf blight (BLB) disease has not yet been achieved due to the lack of effective agrochemicals and available targets. Herein, we develop a series of novel bissulfones and a novel target with a unique mechanism to address this challenge. The developed bissulfones can control Xanthomonas oryzae pv. oryzae (Xoo), and 2-(bis(methylsulfonyl)methylene)-N-(4-chlorophenyl) hydrazine-1-carboxamide (B7) is more effective than the commercial drugs thiodiazole copper (TC) and bismerthiazol (BT). Pyruvate kinase (PYK) in Xoo has been identified for the first time as the target protein of our bissulfone B7. PYK modulates bacterial virulence via a CRP-like protein (Clp)/two-component system regulatory protein (regR) axis. The elucidation of this pathway facilitates the use of B7 to reduce PYK expression at the transcriptional level, block PYK activity at the protein level, and impair the interaction within the PYK-Clp-regR complex via competitive inhibition, thereby attenuating bacterial biology and pathogenicity. This study offers insights into the molecular and mechanistic aspects underlying anti-Xoo strategies that target PYK. We believe that these valuable discoveries will be used for bacterial disease control in the future.


Subject(s)
Oryza , Xanthomonas , Virulence , Pyruvate Kinase/metabolism , Pyruvate Kinase/pharmacology , Anti-Bacterial Agents/metabolism , Oryza/microbiology , Biology , Plant Diseases/prevention & control , Plant Diseases/microbiology
9.
Annu Rev Food Sci Technol ; 15(1): 473-493, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38134385

ABSTRACT

Pesticides protect crops against pests, and green pesticides are referred to as effective, safe, and eco-friendly pesticides that are sustainably synthesized and manufactured (i.e., green chemistry production). Owing to their high efficacy, safety, and ecological compatibility, green pesticides have become a main direction of global pesticide research and development (R&D). Green pesticides attract attention because of their close association with the quality and safety of agricultural produce. In this review, we briefly define green pesticides and outline their significance, current registration, commercialization, and applications in China, the European Union, and the United States. Subsequently, we engage in an in-depth analysis of the impact of newly launched green pesticides on the environment and ecosystems. Finally, we focus on the potential risks of dietary exposure to green pesticides and the possible hazards of chronic toxicity and carcinogenicity. The status of and perspective on green pesticides can hopefully inspire green pesticide R&D and applications to ensure agricultural production and safeguard human and ecological health.


Subject(s)
Food Security , Pesticides , Humans , Agriculture , Green Chemistry Technology , Crops, Agricultural , China , United States
10.
J Agric Food Chem ; 71(40): 14527-14538, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37769121

ABSTRACT

Vanisulfane is a plant resistance inducer that exhibits potent activity against potato virus Y (PVY), but its mechanism of action against this virus remains unclear. Our results showed that when we used 400 µg/mL of vanisulfane, it provided an impressive level of control (63.55%) against PVY in Nicotiana benthamiana L. Meanwhile, vanisulfane increased activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and phenylalanine ammonia lyase (PAL) as well as inducing H2O2 accumulation and Ca2+ influx to mediate PVY resistance. Furthermore, combined transcriptome and proteome analyses revealed that vanisulfane upregulated the POD52, APX, and PR-1 genes and proteins in the salicylic acid (SA) signaling pathway. Experiments demonstrated that vanisulfane triggered the accumulation of SA, upregulated the expression of ICS1 and PR-1 genes, and induced resistance against PVY in transgenic Arabidopsis plants. Consequently, it can be concluded that vanisulfane mediates the SA-dependent signaling pathway to confer PVY resistance in plants.

11.
Sci Total Environ ; 899: 165626, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37481085

ABSTRACT

Plant phenotyping is important for plants to cope with environmental changes and ensure plant health. Imaging techniques are perceived as the most critical and reliable tools for studying plant phenotypes. Thermal imaging has opened up new opportunities for nondestructive imaging of plant phenotyping. However, a comprehensive summary of thermal imaging in plant phenotyping is still lacking. Here we discuss the progress and future prospects of thermal imaging for assessing plant growth and stress responses. First, we classify thermal imaging into ground-based and aerial platforms based on their adaptability to different experimental environments (including laboratory, greenhouse, and field). It is convenient to collect phenotypic information of different dimensions. Second, in order to enhance the efficiency of thermal image processing, automatic algorithms based on deep learning are employed instead of traditional manual methods, greatly reducing the time cost of experiments. Considering its ease of implementation, handling and instant response, thermal imaging has been widely used in research on environmental stress, crop yield, and seed vigor. We have found that thermal imaging can detect thermal energy dissipation caused by living organisms (e.g., pests, viruses, bacteria, fungi, and oomycetes), enabling early disease diagnosis. It also recognizes changes leaf surface temperatures resulting from reduced transpiration rates caused by nutrient deficiency, drought, salinity, or freezing. Furthermore, thermal imaging predicts crop yield under different water states and forecasts the viability of dormant seeds after water absorption by monitoring temperature changes in the seeds. This work will assist biologists and agronomists in studying plant phenotypes and serve a guide for breeders to develop high-yielding, stress-tolerant, and superior crops.


Subject(s)
Crops, Agricultural , Plant Development , Crops, Agricultural/physiology , Phenotype , Seeds , Water/physiology
12.
J Agric Food Chem ; 71(23): 8825-8833, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37262424

ABSTRACT

As a bleaching herbicide, cypyrafluone was applied postemergence in wheat fields for annual weed control; especially, this herbicide possesses high efficacy against cool-season grass weed species such as Alopecurus aequalis and Alopecurus japonicus. In this study, the target of action of cypyrafluone on 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibition was confirmed. This herbicide caused severe foliar whitening symptoms at 5-7 days after treatment (DAT) and death of the whole plant within 10 DAT. Significant increases in phytoene content and significant decreases in kinds of carotenoid and chlorophyll pigments were observed. The content of chlorophyll pigments in cypyrafluone-treated Spirodela polyrhiza decreased upon the addition of homogentisic acid (HGA), which indicated that cypyrafluone prevents the HGA production, possibly by inhibiting the catalytic activity of 4-HPPD. Indeed, cypyrafluone strongly inhibited the catalytic activity of Arabidopsis thaliana HPPD produced by Escherichia coli, which was approximately 2 times less effective than mesotrione. In addition, overexpression of Oryza sativa HPPD in rice and A. thaliana both conferred a high tolerance level to cypyrafluone on them. Molecular docking found that cypyrafluone bonded well to the active site of the HPPD and formed a bidentate coordination interaction with the Fe2+ atom, with distances of 2.6 and 2.7 Å between oxygen atoms and the Fe2+ atom and a binding energy of -8.0 kcal mol-1.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Arabidopsis , Herbicides , Triticum/metabolism , 4-Hydroxyphenylpyruvate Dioxygenase/chemistry , Molecular Docking Simulation , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Weed Control , Herbicides/pharmacology , Herbicides/chemistry , Poaceae/metabolism , Arabidopsis/metabolism
13.
J Agric Food Chem ; 71(18): 6859-6870, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37126004

ABSTRACT

With the continuous evolution of insect resistance, it is a tremendous challenge to control the fall armyworm (Spodoptera frugiperda) with traditional insecticides. To solve this pending issue, a series of novel isoxazoline derivatives containing diaryl ether structures were designed and synthesized, and most of the target compounds exhibited excellent insecticidal activity. Based on the three-dimensional quantitative structure-activity relationship (3D-QSAR) model analysis, we further optimized the molecular structure with compound L35 obtained and tested for its activity. Compound L35 (LC50 = 1.69 mg/L) exhibited excellent insecticidal activity against S. frugiperda, which was better than those of commercial fipronil (LC50 = 70.78 mg/L) and indoxacarb (LC50 = 5.37 mg/L). The enzyme-linked immunosorbent assay showed that L35 could upregulate the levels of GABA in insects. In addition, molecular docking and transcriptomic results also indicated that compound L35 may affect the nervous system of S. frugiperda by acting on GABA receptors. Notably, through high-performance liquid chromatography (HPLC), we were able to obtain the two enantiomers of compound L35, and the insecticidal activity test revealed that S-(+)-L35 was 44 times more active than R-(-)-L35 against S. frugiperda. This study established the chemistry basis and mechanistic foundations for the future development of pesticide candidates against fall armyworms.


Subject(s)
Ether , Insecticides , Animals , Spodoptera , Molecular Docking Simulation , Insecticides/pharmacology , Insecticides/chemistry , Ethyl Ethers , Ethers , Larva
14.
J Agric Food Chem ; 71(21): 7977-7987, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37204296

ABSTRACT

Twenty-eight imidazo[1,2-c]pyrimidin-5(6H)-one nucleoside derivatives incorporating a sulfonamide scaffold with preferable inactivating activities on pepper mild mottle virus (PMMoV) were designed and synthesized. Then, compound B29 with illustrious inactivating activity against PMMoV was received on the basis of the three-dimensional quantitative structure-activity relationship (3D-QSAR) model, with the EC50 of 11.4 µg/mL, which was superior to ningnanmycin (65.8 µg/mL) and template molecule B16 (15.3 µg/mL). Furthermore, (1) transmission electron microscopy (TEM) indicated that B29 could cause severe fracture of virions; (2) microscale thermophoresis (MST) and molecular docking further demonstrated that B29 had faintish binding affinities with PMMoV CPR62A (Kd = 202.84 µM), PMMoV CPL144A (Kd = 141.57 µM), and PMMoV CPR62A,L144A (Kd = 332.06 µM) compared to PMMoV CP (Kd = 4.76 µM); and (3) western blot and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) results of pCB-GFP-PMMoV CPR62A, pCB-GFP-PMMoV CPL144A, and pCB-GFP-PMMoV CPR62A,L144A were consistent with MST and confocal. In brief, the above results indicated that the amino acids at positions 62 and 144 of PMMoV CP might be the key amino acid sites of B29 acted on.


Subject(s)
Nucleosides , Tobamovirus , Molecular Docking Simulation , Amino Acids , Sulfanilamide
15.
J Agric Food Chem ; 71(19): 7239-7249, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37158241

ABSTRACT

The specific conation of our research is to invent a series of indole derivatives containing a 4,5-dihydro-1H-pyrazoline motif with effective antiviral activity. The anti-potato virus Y (PVY) activities of target compounds were systematically investigated. Most target compounds exhibited good PVY activities. Compound D40, which exhibited outstanding anti-PVY activities, was sieved using a three-dimensional quantitative structure-activity relationship. Based on the anti-PVY activity assessments, the curative and protective activities of D40 were found to be 64.9 and 60.8%, respectively, which were superior to those of the commercial drug Ningnanmycin (50.2 and 50.7%, respectively). In addition, defensive enzyme activities and proteomics results indicate that D40 can increase the three crucial defense-related enzyme activities and regulate the carbon fixation pathway in photosynthetic organisms to intensify the resistance of plants to PVY. Therefore, our study suggests that compound D40 might be used as a suitable crop protection pesticide.


Subject(s)
Potyvirus , Tobacco Mosaic Virus , Antiviral Agents/chemistry , Indoles/pharmacology , Indoles/chemistry , Drug Design , Quantitative Structure-Activity Relationship , Plant Diseases/prevention & control
16.
J Agric Food Chem ; 71(19): 7192-7200, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37144888

ABSTRACT

Pesticide registration is a scientific, legal, and administrative process that checks if a pesticide is safe and effective for its intended use before it can be used. The toxicity test is a key part of pesticide registration, which includes human health and ecological effect testing. Different countries adopt their own toxicity test criteria for pesticide registration guidelines. However, these differences, which may help accelerate the progress of pesticide registration and reduce the number of animals used, are yet to be explored and compared. Herein, we outlined the details and compared the differences between the toxicity tests in the United States, the European Union, Japan, and China. Some differences lie in the types and waiver policy, while others are in new approach methodologies (NAMs). On the basis of these differences, there is great potential for the optimization of NAMs during the toxicity tests. It is expected that this perspective can contribute to developing and adopting NAMs.


Subject(s)
Pesticides , Animals , Humans , United States , Pesticides/toxicity , European Union , Japan , Toxicity Tests/methods , China
17.
J Agric Food Chem ; 71(22): 8381-8390, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37218999

ABSTRACT

Bean aphid (Aphis craccivora) resistance to commonly used insecticides has made controlling these pests increasingly difficult. In this study, we introduced isoxazole and isoxazoline, which possess insecticidal activity, into pyrido[1,2-a]pyrimidinone through a scaffold hopping strategy. We designed and synthesized a series of novel mesoionic compounds that exhibited a range of insecticidal activities against A. craccivora. The LC50 values of compounds E1 and E2 were 0.73 and 0.88 µg/mL, respectively, better than triflumezopyrim (LC50 = 2.43 µg/mL). Proteomics and molecular docking analyses showed that E1 might influence the A. craccivora nervous system by interacting with neuronal nicotinic acetylcholine receptors (nAChRs). This research offers a new approach to the advancement of novel mesoionic insecticides.


Subject(s)
Insecticides , Pyrimidinones , Pyrimidinones/chemical synthesis , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Insecticides/chemical synthesis , Insecticides/chemistry , Insecticides/pharmacology , Isoxazoles/chemistry , Molecular Structure , Proteomics , Aphids , Animals , Structure-Activity Relationship
18.
J Agric Food Chem ; 71(16): 6301-6313, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37052574

ABSTRACT

A total of 35 piperazine derivatives were designed and synthesized, and their activities against tomato spotted wilt virus (TSWV) were evaluated systematically. Compounds 34 and 35 with significant anti-TSWV activity were obtained. Their EC50 values were 62.4 and 59.9 µg/mL, prominently better than the control agents ningnanmycin (113.7 µg/mL) and ribavirin (591.1 µg/mL). To explore the mechanism of the interaction between these compounds and the virus, we demonstrated by agrobacterium-mediated, molecular docking, and microscale thermophoresis (MST) experimental methods that compounds 34 and 35 could inhibit the infection of TSWV by binding with the N protein to prevent the assembly of the virus core structure ribonucleoprotein (RNP), and it also meant that the arginine at 94 of the N protein was the key site of interaction between the compounds and the TSWV N target. Therefore, this study demonstrated the potential for forming antiviral agents from piperazine derivatives containing α-ketoamide moieties.


Subject(s)
Heterocyclic Compounds , Tospovirus , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Molecular Docking Simulation , Piperazines/pharmacology , Piperazines/metabolism , Ribavirin , Tospovirus/metabolism , Amides/chemistry
19.
J Agric Food Chem ; 71(17): 6561-6569, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37075263

ABSTRACT

A series of isoxazoline derivatives containing diacylhydrazine moieties were designed and synthesized as potential insecticides. Most of these derivatives exhibited good insecticidal activities against Plutella xylostella, and some compounds exhibited excellent insecticidal activities against Spodoptera frugiperda. Especially, D14 showed outstanding insecticidal activity against P. xylostella (LC50 = 0.37 µg/mL), which was superior to that of ethiprole (LC50 = 2.84 µg/mL) and tebufenozide (LC50 = 15.3 µg/mL) and similar to that of fluxametamide (LC50 = 0.30 µg/mL). Remarkably, the insecticidal activity of D14 against S. frugiperda (LC50 = 1.72 µg/mL) was superior to that of chlorantraniliprole (LC50 = 3.64 µg/mL) and tebufenozide (LC50 = 60.5 µg/mL) but lower than that of fluxametamide (LC50 = 0.14 µg/mL). The results of electrophysiological experiments, molecular docking, and proteomics experiments indicate that compound D14 acts by interfering with the γ-aminobutyric acid receptor to control pests.


Subject(s)
Insecticides , Hydrazines/pharmacology , Insecticides/pharmacology , Molecular Docking Simulation , Receptors, GABA , Isoxazoles/chemistry , Isoxazoles/pharmacology
20.
Brief Bioinform ; 24(2)2023 03 19.
Article in English | MEDLINE | ID: mdl-36738254

ABSTRACT

Drug resistance is increasingly among the main issues affecting human health and threatening agriculture and food security. In particular, developing approaches to overcome target mutation-induced drug resistance has long been an essential part of biological research. During the past decade, many bioinformatics tools have been developed to explore this type of drug resistance, and they have become popular for elucidating drug resistance mechanisms in a low cost, fast and effective way. However, these resources are scattered and underutilized, and their strengths and limitations have not been systematically analyzed and compared. Here, we systematically surveyed 59 freely available bioinformatics tools for exploring target mutation-induced drug resistance. We analyzed and summarized these resources based on their functionality, data volume, data source, operating principle, performance, etc. And we concisely discussed the strengths, limitations and application examples of these tools. Specifically, we tested some predictive tools and offered some thoughts from the clinician's perspective. Hopefully, this work will provide a useful toolbox for researchers working in the biomedical, pesticide, bioinformatics and pharmaceutical engineering fields, and a good platform for non-specialists to quickly understand drug resistance prediction.


Subject(s)
Computational Biology , Software , Humans , Mutation , Drug Resistance
SELECTION OF CITATIONS
SEARCH DETAIL
...