Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(9): 7890-7895, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38376475

ABSTRACT

The physical and chemical properties of metal oxide nanocrystals are closely related to their exposed facets, so the study on facet structures is helpful to develop facet/morphology-property relationships and rationally design nanostructures with desired properties. In this study, wurtzite ZnO nanorods with different aspect ratios were prepared by controlling the Zn2+/OH- ratio, temperature and time in hydrothermal processes. An 17O solid-state NMR study was performed on these nanorods, after surface 17O labeling, to explore the relationship of the 17O NMR signals with the local surface structure of different exposed facets, i.e., nonpolar (101̄0) and polar (0002) facets. It is observed that, one of the signals, the sharp component of a peak at -18.8 ppm, comprises the contribution from the oxygen ions on the polar (0002) facets, in addition to that from nonpolar (101̄0) facets, which is confirmed by 17O NMR spectra of ZnO nanorods with controlled aspect ratios and different thermal treatment conditions. This is important for accurately interpreting the 17O NMR signal of ZnO-containing materials, especially when studying the facet-related mechanisms. The method applied here can also be extended to study the facet-dependent properties of other faceted oxide nanocrystals.

2.
Chem Commun (Camb) ; 60(24): 3275-3278, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38421011

ABSTRACT

Interactions of ZnO nanorods with water and the dynamic migration characteristic of surface oxygen species are important in controlling its structure and catalytic properties. Here, we apply 17O solid-state NMR spectroscopy to investigate the interactions, as well as oxygen ion diffusion properties of ZnO nanorods under different conditions.

3.
J Am Chem Soc ; 144(51): 23340-23351, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36512749

ABSTRACT

ZnO plays a very important role in many catalytic processes involving H2, yet the details on their interactions and H2 activation mechanism are still missing, owing to the lack of a characterization method that provides resolution at the atomic scale and follows the fate of oxide surface species. Here, we apply 17O solid-state NMR spectroscopy in combination with DFT calculations to unravel the surface structure of ZnO nanorods and explore the H2 activation process. We show that six different types of oxygen ions in the surface and subsurface of ZnO can be distinguished. H2 undergoes heterolytic dissociation on three-coordinated surface zinc and oxygen ions, while the formed hydride species migrate to nearby oxygen species, generating a second hydroxyl site. When oxygen vacancies are present, homolytic dissociation of H2 occurs and zinc hydride species form from the vacancies. Reaction mechanisms on oxide surfaces can be explored in a similar manner.


Subject(s)
Zinc Oxide , Catalysis , Oxides , Oxygen , Zinc
4.
Nat Commun ; 13(1): 6093, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36241633

ABSTRACT

Layered double oxides (LDOs) can restore the parent layered double hydroxides (LDHs) structure under hydrous conditions, and this "memory effect" plays a critical role in the applications of LDHs, yet the detailed mechanism is still under debate. Here, we apply a strategy based on ex situ and in situ solid-state NMR spectroscopy to monitor the Mg/Al-LDO structure changes during recovery at the atomic scale. Despite the common belief that aqueous solution is required, we discover that the structure recovery can occur in a virtually solid-state process. Local structural information obtained with NMR spectroscopy shows that the recovery in aqueous solution follows dissolution-recrystallization mechanism, while the solid-state recovery is retro-topotactic, indicating a true "memory effect". The amount of water is key in determining the interactions of water with oxides, thus the memory effect mechanism. The results also provide a more environmentally friendly and economically feasible LDHs preparation route.

5.
Foods ; 10(3)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806429

ABSTRACT

An olfactory visualization system conducts a qualitative or quantitative analysis of volatile organic compounds (VOCs) by utilizing the sensor array made of color sensitive dyes. The reaction chamber is important to the sensor array's sufficient and even exposure to VOCs. In the current work, a reaction chamber with an arc baffle embedded in the front of the air inlet for drainage effect was designed. The velocity of field and particle distribution of flow field in the reaction chamber was simulated by COMSOL Multiphysics. Through repeated simulation, the chamber achieved optimal result when the baffle curvature was 3.1 and the vertical distance between the baffle front end and the air inlet was 1.6 cm. Under the new reaction chamber, principal component analysis (PCA) and linear discriminant analysis (LDA) were employed to identify vinegar samples with different storage time through analyzing their VOCs. The LDA model achieved optimal performance when 8 principal components (PCs) were used, and the recognition rate was 95% in both training and prediction sets. The new reaction chamber could improve the stability and precision of an olfactory visualization system for VOCs analysis, and achieve the accurate differentiation and rapid discrimination of Zhenjiang vinegar with different storage time.

6.
J Am Chem Soc ; 140(25): 7885-7895, 2018 06 27.
Article in English | MEDLINE | ID: mdl-29799200

ABSTRACT

Aquaporin Z (AqpZ) is an integral membrane protein that facilitates transport of water across Escherichia coli cells with a high rate. Previously, R189, a highly conserved residue of the selective filter of AqpZ, was proposed as a gate within the water channel on the basis of the observation of both open and closed conformations of its side chain in different monomers of an X-ray structure, and the observation of rapid switches between the two conformations in molecular dynamic simulations. However, the gating mechanism of the R189 side chain remains controversial since it is unclear whether the different conformations observed in the X-ray structure is due to different functional states or is a result of perturbation of non-native detergent environments. Herein, in native-like synthetic bilayers and native E. coli membranes, a number of solid-state NMR techniques are employed to examine gating mechanism of the R189 side chain of AqpZ. One R189 side-chain conformation is highly evident since only a set of peaks corresponding to the R189 side chain is observed in 2D 15N-13C spectra. The immobility of the R189 side chain is detected by 1H-15N dipolar lineshapes, excluding the possibility of the rapid switches between the two side-chain conformations. High-resolution monomeric structure of AqpZ, determined by CS-Rosetta calculations using experimentally measured distance restraints related to the R189 side chain, reveals that this side chain is in an open conformation, which is further verified by its water accessibility. All the solid-state NMR experimental results, combining with water permeability essay, suggest a permanently open conformation of the R189 side chain in the synthetic bilayer and native membranes. This study provides new structural insights into the gating mechanism of aquaporins and highlights the significance of lipid bilayer environments in elucidating the molecular mechanism of membrane proteins.

SELECTION OF CITATIONS
SEARCH DETAIL
...