Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Cyborg Bionic Syst ; 5: 0083, 2024.
Article in English | MEDLINE | ID: mdl-38533379

ABSTRACT

This work presents a novel electromagnetic driving system that consists of eight optimized electromagnets arranged in an optimal configuration and employs a control framework based on an active disturbance rejection controller (ADRC) and virtual boundary. The optimal system configuration enhances the system's compatibility with other ophthalmic surgical instruments, while also improving its capacity to generate magnetic force in the vertical direction. Besides, the optimal electromagnet parameters provide a superior comprehensive performance on magnetic field generation capacity and thermal power. Hence, the presented design achieves a stronger capacity for sustained work. Furthermore, the ADRC controller effectively monitors and further compensates the total disturbance as well as gravity to enhance the system's robustness. Meanwhile, the implementation of virtual boundaries substantially enhances interactive security via collision avoidance. The magnetic and thermal performance tests have been performed on the electromagnet to verify the design optimization. The proposed electromagnet can generate a superior magnetic field of 2.071 mT at a distance of 65 mm with an applied current of 1 A. Moreover, it demonstrates minimal temperature elevation from room temperature (25 °C) to 46 °C through natural heat dissipation in 3 h, thereby effectively supporting prolonged magnetic manipulation of intraocular microsurgery. Furthermore, trajectory tracking experiments with disturbances have been performed in a liquid environment similar to the practical ophthalmic surgery scenarios, to verify the robustness and security of the presented control framework. The maximum root mean square (RMS) error of performance tests in different operation modes remains 35.8 µm, providing stable support for intraocular microsurgery.

2.
Soft Robot ; 11(1): 171-182, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37792330

ABSTRACT

This article presents a novel extensible continuum robot (ECR) with growing motion capability for improved flexible access in transoral laryngeal procedures. The robot uses an extensible continuum joint with a staggered V-shaped notched structure as the backbone, driven by the pushing and pulling of superelastic Nitinol rods. The notched structure is optimized to achieve a wide range of extension/contraction and bending motion for the continuum joint. The successive and uniform deflection of the notches provides the continuum joint with excellent constant curvature bending characteristics. The bidirectional rod-driven approach expands the robot's extension capabilities with both pushing and pulling operations, and the superelasticity of the driving rods preserves the robot's bending performance. The ECR significantly increases motion dexterity and reachability through its variable length, which facilitates collision-free access to deep lesions by following the anatomy. To further exploit the advantages of the ECR in path-following for flexible access, a growing motion approach inspired by the plant growth process has been proposed to minimize the path deviation error. Characterization experiments are conducted to verify the performances of the proposed ECR. The extension ratio achieves up to 225.92%, and the average distal positioning error and hysteresis error values are 2.87% and 0.51% within the ±120° bending range. Compared with the typical continuum robot with a fixed length, the path-following deviation of this robot is reduced by more than 58.30%, effectively reducing the risk of collision during access. Phantom experiments validate the feasibility of the proposed concept in flexible access procedures.


Subject(s)
Robotic Surgical Procedures , Robotics , Robotic Surgical Procedures/methods , Equipment Design , Motion , Phantoms, Imaging
3.
iScience ; 26(10): 107760, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37720109

ABSTRACT

Osteoporosis is a prevalent systemic metabolic disease in modern society, in which patients often suffer from bone loss due to over-activation of osteoclasts. Currently, amelioration of bone loss through modulation of osteoclast activity is a major therapeutic strategy. Ataxia telangiectasia mutated (ATM) inhibitor CGK733 (CG) was reported to have a sensitizing impact in treating malignancies. However, its effect on osteoporosis remains unclear. In this study, we investigated the effects of CG on osteoclast differentiation and function, as well as the therapeutic effects of CG on osteoporosis. Our study found that CG inhibits osteoclast differentiation and function. We further found that CG inhibits the activation of NFATc1 and ultimately osteoclast formation by inhibiting RANKL-mediated Ca2+ oscillation and the NF-κB/MAPK signaling pathway. Next, we constructed an ovariectomized mouse model and demonstrated that CG improved bone loss in ovariectomized mice. Therefore, CG may be a potential drug for the prevention and treatment of osteoporosis.

4.
Wounds ; 35(9): E268-E274, 2023 09.
Article in English | MEDLINE | ID: mdl-37769284

ABSTRACT

INTRODUCTION: The Meek micrografting technique used in STSG expansion is effective in achieving wide and rapid coverage of burn wounds. Certain growth factors have also been shown to modulate or mediate wound healing. OBJECTIVE: In this study, a combined treatment approach for severe burns involving the Meek micrografting technique, systemic application of rhGH, and topical application of rhEGF was evaluated. MATERIALS AND METHODS: A retrospective study was conducted of 7 extensively burned patients who were treated with the Meek technique, systemic application of rhGH, and topical application of rhEGF between January 2017 and December 2019. RESULTS: The mean percent TBSA burned was 89%. An average of 9.5 surgical procedures were performed to obtain skin cover, with an average of 5.8 Meek micrograft procedures performed in the 6 surviving patients. Complete wound healing was achieved at an average of 120 days in the 6 surviving patients. The mean graft take rate was 81%. Infection was the main reason for graft failure. Donor sites were used for up to 5 re-harvestings without additional morbidity. CONCLUSIONS: A multipronged treatment approach that combines the Meek micrografting technique, systemic application of rhGH, and topical application of rhEGF is a promising tool for the management of severe and extensive burns.

5.
Cancer Biomark ; 38(2): 131-142, 2023.
Article in English | MEDLINE | ID: mdl-37599522

ABSTRACT

Cancer has become a leading cause of morbidity and mortality in recent years. Its high prevalence has had a severe impact on society. Researchers have achieved fruitful results in the causative factors, pathogenesis, treatment strategies, and cancer prevention. Semaphorin 3F (SEMA3F), a member of the signaling family, was initially reported in the literature to inhibit the growth, invasion, and metastasis of cancer cells in lung cancer. Later studies showed it has cancer-inhibiting effects in malignant tumors such as breast, colorectal, ovarian, oral squamous cell carcinoma, melanoma, and head and neck squamous carcinoma. In contrast, recent studies have reported that SEMA3F is expressed more in hepatocellular carcinoma than in normal tissue and promotes metastasis of hepatocellular carcinoma. We chose lung, breast, colorectal, and hepatocellular carcinomas with high clinical prevalence to review the roles and molecular mechanisms of SEMA3F in these four carcinomas. We concluded with an outlook on clinical interventions for patients targeting SEMA3F.


Subject(s)
Carcinoma, Hepatocellular , Carcinoma, Squamous Cell , Colorectal Neoplasms , Head and Neck Neoplasms , Liver Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/pathology , Membrane Proteins , Incidence , Nerve Tissue Proteins , Squamous Cell Carcinoma of Head and Neck , Colorectal Neoplasms/pathology
6.
Biomed Pharmacother ; 161: 114508, 2023 May.
Article in English | MEDLINE | ID: mdl-37002582

ABSTRACT

Heterotopic ossification (HO) denotes the presence of mature bone tissue in soft tissues or around joints. Inflammation is a key driver of traumatic HO, and macrophages play an important role in this process. Ethyl caffeate (ECF), a critical active compound found in Petunia, exerts significant anti-inflammatory effects. Herein, we established a mouse model of HO by transection of the Achilles tendon and back burn and found abundant macrophage infiltration in the early stage of HO, which decreased with time. In vitro and in vivo experiments indicated that ECF inhibited macrophage polarization, and mechanistic studies showed that it inhibited the SIRT1/NF-κB signalling pathway, thereby suppressing the release of downstream inflammatory cytokines. ECF reduced HO in mice, and its effect was comparable to indomethacin (INDO). In vitro studies revealed that ECF did not directly affect the mineralization of mesenchymal stem cells (MSCs) or osteogenic differentiation but inhibited these processes by reducing the level of inflammatory cytokines in the conditioned medium (CM). Thus, M1 macrophages may play a crucial role in the pathogenesis of HO, and ECF is a prospective candidate for the prevention of trauma-induced HO. DATA AVAILABILITY: Data will be made available on request.


Subject(s)
NF-kappa B , Ossification, Heterotopic , Mice , Animals , NF-kappa B/metabolism , Osteogenesis , Sirtuin 1 , Macrophages/metabolism , Cytokines/pharmacology
7.
Cancer Inform ; 22: 11769351231161478, 2023.
Article in English | MEDLINE | ID: mdl-37101729

ABSTRACT

Osteosarcoma (OS) is the most common primary cancer in the skeletal system, characterized by a high incidence of lung metastasis, local recurrence and death. Systemic treatment of this aggressive cancer has not improved significantly since the introduction of chemotherapy regimens, underscoring a critical need for new treatment strategies. TRAIL receptors have long been proposed to be therapeutic targets for cancer treatment, but their role in osteosarcoma remains unclear. In this study, we investigated the expression profile of four TRAIL receptors in human OS cells using total RNA-seq and single-cell RNA-seq (scRNA-seq). The results revealed that TNFRSF10B and TNFRSF10D but not TNFRSF10A and TNFRSF10C are differentially expressed in human OS cells as compared to normal cells. At the single cell level by scRNA-seq analyses, TNFRSF10B, TNFRSF10D, TNFRSF10A and TNFRSF10C are most abundantly expressed in endothelial cells of OS tissues among nine distinct cell clusters. Notably, in osteoblastic OS cells, TNFRSF10B is most abundantly expressed, followed by TNFRSF10D, TNFRSF10A and TNFRSF10C. Similarly, in an OS cell line U2-OS using RNA-seq, TNFRSF10B is most abundantly expressed, followed by TNFRSF10D, TNFRSF10A and TNFRSF10C. According to the TARGET online database, poor patient outcomes were associated with low expression of TNFRSF10C. These results could provide a new perspective to design novel therapeutic targets of TRAIL receptors for the diagnosis, prognosis and treatment of OS and other cancers.

8.
Biomed Pharmacother ; 160: 114347, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36746095

ABSTRACT

The formation of osteoclasts and their hyperactive bone resorption are related to the aggregation of intracellular reactive oxygen species (ROS). Flavonoids, derived from plant active ingredients, can alleviate the symptoms of osteoporosis (OP). Isosinensetin (Iss) is a flavonoid with antioxidant effects obtained mainly from citrus fruits, and its effect on osteoclastogenesis has not been reported. In this study, we investigated the antioxidant activity of Iss on osteoclast differentiation and function, as well as the therapeutic impact of Iss on OP. We found that Iss inhibited osteoclastogenesis and suppressed the bone resorption function of osteoclasts. Additionally, Iss reduced receptor activator of nuclear factor-κB ligand (RANKL)-induced intracellular ROS. Using quantitative real-time polymerase chain reaction and western blot, we further found that Iss inhibited osteoclast-specific genes and related proteins, while promoting the expression of antioxidant enzyme-related genes and proteins. Mechanistically, Iss reduces intracellular ROS by activating nuclear factor-erythroid 2-related factor 2 (Nrf2) and its related antioxidant enzymes and inhibits the downstream nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways of ROS, which in turn inhibits nuclear factor of activated T cells 1 (NFATc1), and ultimately inhibits osteoclastogenesis. In vivo, by micro-computed tomography (Micro-CT) assay and histological analyses, we found that Iss could reduce bone loss in ovariectomized (OVX) mice. Therefore, Iss has the potential as an OP preventative and therapeutic drug option.


Subject(s)
Bone Resorption , Osteoporosis , Animals , Mice , NF-kappa B/metabolism , Reactive Oxygen Species/pharmacology , Antioxidants/pharmacology , Antioxidants/metabolism , X-Ray Microtomography , Cell Differentiation , Osteoclasts , Bone Resorption/metabolism , MAP Kinase Signaling System , Osteogenesis , Osteoporosis/drug therapy , Osteoporosis/pathology , Estrogens/pharmacology , RANK Ligand/metabolism
9.
Biomed Pharmacother ; 159: 114101, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36640671

ABSTRACT

4-Methylcatechol (4-MC) is an agonist of various neurotrophic factors, which can upregulate the expression of Heme oxygenase 1 (HO-1) protein by activating nuclear factor erythroid 2-related factor 2 (Nrf2), thereby inhibiting oxidative stress-induced neural stem cell death. During RANKL-stimulated osteoclast differentiation, intracellular reactive oxygen species (ROS) levels were increased. Nonetheless, the effect of 4-MC on osteoclast formation and bone resorption function has not been researched. In this study, we investigated the effect of HO-1 upregulation by 4-MC on RANKL-induced osteoclastogenesis and explored the molecular mechanism of HO-1 upregulation by 4-MC. We found that the small molecule compound 4-MC could bind to Keap1 amino acid residue of glycine GLY 367, isoleucine ILE 559 and valine VAL 606, with a predicted binding energy of -4.99 kcal/mol. 4-MC was found to inhibit osteoclast differentiation in vitro by activating Nrf2 to scavenge ROS, inhibiting NF-κB phosphorylation, and alleviating osteoporosis in ovariectomized (OVX) mice. Taken together, 4-MC reduces ROS by inhibiting Keap1, thereby preventing OVX-induced bone loss.


Subject(s)
NF-E2-Related Factor 2 , Osteogenesis , Animals , Mice , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Molecular Docking Simulation , Kelch-Like ECH-Associated Protein 1/metabolism , Osteoclasts , NF-kappa B/metabolism , RANK Ligand/metabolism
10.
Free Radic Biol Med ; 196: 121-132, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36649902

ABSTRACT

Osteoclast differentiation and function are critical targets for anti-osteoporosis treatment. Oxidative stress also plays an important regulatory role in the differentiation of osteoclasts. Corylifol A (CA) is a flavonoid extracted from the Psoralea fruit. It has anti-inflammatory and antioxidant properties despite its unknown effect on osteoporosis. This study found that CA prevented estrogen-deficiency-induced bone loss and suppressed osteoclastogenesis in ovariectomized (OVX) mice by inhibiting intracellular reactive oxygen species (ROS) levels. In vivo, CA effectively prevented trabecular bone loss and reduced osteoclasts' number on the bone surface in OVX mice, as demonstrated in micro-CT, osteometry, and immunohistochemical data. However, CA did not affect cortical bone. In vitro, CA inhibited RANKL-induced podosome belt formation, osteoclastogenesis, and bone resorption functions. CA suppressed RANKL-induced ROS by boosting antioxidant enzymes (Catalase and NQO1) and NFATc1 signaling pathway related protein expression, including integrin αvß3, NFATc1 and CTSK. Moreover, CA inhibited osteoclast-specific genes, including Ctsk, Acp5, and Mmp9. CA also attenuated the MAPK/ERK pathway, but did not affect the NF-κB signaling pathway. In terms of osteogenesis, CA did not inhibit or promote osteogenic differentiation and mineralization in vitro. These results reveal that CA could be a new replacement therapy for treating estrogen-deficiency osteoporosis via suppressing osteoclastogenesis and intracellular ROS.


Subject(s)
Bone Resorption , Osteoporosis , Animals , Mice , Osteogenesis , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Osteoclasts/metabolism , Bone Resorption/drug therapy , Bone Resorption/genetics , Bone Resorption/prevention & control , Osteoporosis/drug therapy , Osteoporosis/genetics , Osteoporosis/prevention & control , NF-kappa B/metabolism , Estrogens/metabolism , RANK Ligand/genetics , RANK Ligand/pharmacology , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Cell Differentiation , Mice, Inbred C57BL
11.
Cancer Inform ; 21: 11769351221140101, 2022.
Article in English | MEDLINE | ID: mdl-36507075

ABSTRACT

Nuclear paraspeckles are subnuclear bodies contracted by nuclear-enriched abundant transcript 1 (NEAT1) long non-coding RNA, localised in the interchromatin space of mammalian cell nuclei. Paraspeckles have been critically involved in tumour progression, metastasis and chemoresistance. To this date, there are limited findings to suggest that paraspeckles, NEAT1 and heterogeneous nuclear ribonucleoproteins (hnRNPs) directly or indirectly play roles in osteosarcoma progression. Herein, we analysed NEAT1, paraspeckle proteins (SFPQ, PSPC1 and NONO) and hnRNP members (HNRNPK, HNRNPM, HNRNPR and HNRNPD) gene expression in 6 osteosarcoma tumour tissues using the single-cell RNA-sequencing method. The normalised data highlighted that the paraspeckles transcripts were highly abundant in osteoblastic OS cells, except NEAT1, which was highly expressed in myeloid cell 1 and 2 subpopulations.

12.
Int Immunopharmacol ; 113(Pt A): 109370, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36327872

ABSTRACT

As a common disease in modern society, osteoporosis is caused by osteoclast hyperactivation, leading to enhanced bone resorption. Reactive oxygen species (ROS) metobolism and nuclear factor-activated T cells 1 (NFATc1) activities are two crucial processes during osteoclastogenesis. AZD1390 (AZD), an inhibitor of ataxia telangiectasia mutated (ATM), has been reported for antitumor effects, but little is known about how it plays a function in metabolic bone disease. Here, we found that AZD inhibitsthe generation, function and ROS-scavenging enzyme activity of mature osteoclast induced by RANKL stimulation, in a dose-dependent manner.Mechanistic analysis shows thatAZD affects osteoclast function and differentiation by inhibiting RANKL-induced NFATc1 signaling pathway and by increasing ROS-scavenging enzymes production in oxidative stress pathways. Preclinical studies have shown that AZD protects against bone loss in an ovariectomy (OVX) mouse model. Finally, our data confirm that AZD may prevent OVX-induced bone loss by abrogating RANKL-induced AKT/GSK3ß/NFATc1 signaling pathways, and by promoting the expression of ROS scavenging enzymes in oxidative stress pathways.Collectively, our research shows that AZD has the potential as a new therapeutic agent for osteoporosis.


Subject(s)
Bone Resorption , Osteoporosis , Mice , Animals , Female , Osteoclasts , Reactive Oxygen Species/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Proto-Oncogene Proteins c-akt/metabolism , NFI Transcription Factors/metabolism , NFI Transcription Factors/pharmacology , T-Lymphocytes/metabolism , RANK Ligand/metabolism , Bone Resorption/prevention & control , Osteoporosis/metabolism , Osteogenesis , Cell Differentiation , NFATC Transcription Factors/metabolism
13.
Front Pharmacol ; 13: 896108, 2022.
Article in English | MEDLINE | ID: mdl-36110547

ABSTRACT

Osteoporosis affects around 200 million people globally, with menopausal women accounting for the bulk of cases. In the occurrence and development of osteoporosis, a key role is played by osteoclasts. Excessive osteoclast-mediated bone resorption activity reduces bone mass and increases bone fragility, resulting in osteoporosis. Thus, considerable demand exists for designing effective osteoporosis treatments based on targeting osteoclasts. Eltanexor (Elt; KPT-8602) is a selective nuclear-export inhibitor that covalently binds to and blocks the function of the nuclear-export protein exportin-1 (XPO1), which controls the nucleus-to-cytoplasm transfer of certain critical proteins related to growth regulation and tumor suppression, such as p53, IκBα [nuclear factor-κB (NF-κB) inhibitor α] and FOXO1; among these proteins, IκBα, a critical component of the NF-κB signaling pathway that primarily governs NF-κB activation and transcription. How Elt treatment affects osteoclasts remains poorly elucidated. Elt inhibited the growth and activity of RANKL-induced osteoclasts in vitro in a dose-dependent manner, and Elt exerted no cell-killing effect within the effective inhibitory concentration. Mechanistically, Elt was found to trap IκBα in the nucleus and thus protect IκBα from proteasome degradation, which resulted in the blocking of the translocation of IκBα and NF-κB p65 and the consequent inhibition of NF-κB activity. The suppression of NF-κB activity, in turn, inhibited the activity of two transcription factors (NFATc1 and c-Fos) essential for osteoclast formation and led to the downregulation of genes and proteins related to bone resorption. Our study thus provides a newly identified mechanism for targeting in the treatment of osteoporosis.

14.
An Acad Bras Cienc ; 94(3): e20211160, 2022.
Article in English | MEDLINE | ID: mdl-36074406

ABSTRACT

The aim of this study was to determine the resistance mechanism of Pseudomonas aeruginosa to cefoperazone sodium/sulbactam sodium. We retrospectively analyzed the drug resistance of P.a isolated at the First Affiliated Hospital of Guangxi Medical University. Drug-resistant P.a strains were constructed, then wild-type (WT) and drug-resistant (DR) strains were compared using protein and gene microarrays to determine differences between DR and WT strains. The resistance rates of P. aeruginosa during 2013, 2014 and 2015 were 21.2%, 21.4%, and 24.6% respectively. Among 242 protein peaks of WT and DR bacteriophage proteins, 41 were differentially expressed between the two groups. The expression of 26 and 15 proteins were respectively upregulated and downregulated in the DR compared with the WT group. Gene microarray results revealed 679 mutant loci in the DR group, of which 42 with the top 50 Q values were found in the NCBI database. The rate of P.a resistance to cefoperazone sodium/sulbactam sodium remained high between 2013 and 2015. The numbers of different proteins and genetic variations in the DR strains suggested that the resistance mechanism of P.a to cefoperazone sodium/sulbactam sodium involves multiple genes and proteins that might be key to controlling P.a resistance to cefoperazone sodium/sulbactam sodium.


Subject(s)
Cefoperazone , Sulbactam , Anti-Bacterial Agents/pharmacology , Cefoperazone/pharmacology , China , Humans , Microbial Sensitivity Tests , Proteomics , Pseudomonas aeruginosa/genetics , Retrospective Studies , Sodium , Sulbactam/pharmacology
15.
Exp Biol Med (Maywood) ; 247(14): 1214-1227, 2022 07.
Article in English | MEDLINE | ID: mdl-35695550

ABSTRACT

Dysregulation of angiogenesis is associated with tumor development and is accompanied by altered expression of pro-angiogenic factors. EGFL7 is a newly identified antigenic factor that plays a role in various cancers such as breast cancer, lung cancer, and acute myeloid leukemia. We have recently found that EGFL7 is expressed in the bone microenvironment, but its role in giant-cell tumor of bone (GCTB) and osteosarcoma (OS) is unknown. The aims of this study are to examine the gene expression profile of EGFL7 in GCTB and OS and compare with that of VEGF-A-D and TNFSF11 using single-cell RNA sequencing data. In-depth differential expression analyses were employed to characterize their expression in the constituent cell types of GCTB and OS. Notably, EGFL7 in GCTB was expressed at highest levels in the endothelial cell (EC) cluster followed by osteoblasts, myeloid cells, and chondrocytes, respectively. In OS, EGFL7 exhibited highest expression in EC cell cluster followed by osteoblastic OS cells, myeloid cells 1, and carcinoma associated fibroblasts (CAFs), respectively. In comparison, VEGF-A is expressed at highest levels in myeloid cells followed by OCs in GCTB, and in myeloid cells, and OCs in OS. VEGF-B is expressed at highest levels in chondrocytes in GCTB and in OCs in OS. VEGF-C is strongly enriched in ECs and VEGF-D is expressed at weak levels in all cell types in both GCTB and OS. TNFSF11 (or RANKL) shows high expression in CAFs and osteoblastic OS cells in OS, and osteoblasts in GCTB. This study investigates pro-angiogenic genes in GCTB and OS and suggests that these genes and their expression patterns are cell-type specific and could provide potential prognostic biomarkers and cell type target treatment for GCTB and OS.


Subject(s)
Bone Neoplasms , Giant Cell Tumor of Bone , Osteosarcoma , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Calcium-Binding Proteins/genetics , EGF Family of Proteins/genetics , EGF Family of Proteins/metabolism , Giant Cell Tumor of Bone/genetics , Giant Cell Tumor of Bone/metabolism , Giant Cell Tumor of Bone/pathology , Humans , Osteosarcoma/genetics , Sequence Analysis, RNA , Transcription Factors/metabolism , Tumor Microenvironment/genetics , Vascular Endothelial Growth Factor A/metabolism
16.
Exp Biol Med (Maywood) ; 247(11): 921-930, 2022 06.
Article in English | MEDLINE | ID: mdl-35285281

ABSTRACT

Osteosarcoma (OS) differentially expressed genes (DEGs) have been predicted using the data portal of the Therapeutically Applicable Research to Generate Effective Treatments (TARGET). In this study, we sought to identify cell types that specially express key DEGs (MUC1, COL13A1, JAG2, and KAZALD1) in each of the nine identified cell populations derived from tissues of OS tumors with single-cell RNA-sequencing data. Gene expression levels were pairwise compared between cell clusters and a p value < 0.05 was considered differentially expressed. It was revealed that MUC1 is expressed at high levels in osteoblastic OS cells followed by carcinoma-associated fibroblasts (CAFs) and plasmocytes, respectively. COL13A1 is highly expressed in osteoblastic OS cells, CAFs, and endothelial cells (ECs), respectively. The KAZALD1 gene is expressed in CAFs and osteoblastic OS cells at high levels, but at very low levels in plasmocytes, osteoclasts, NK/T, myeloid cells 1, myeloid cells 2, ECs, and B cells. JAG2 is expressed at significantly high levels in ECs and osteoblastic OS cells, and at relatively lower levels in all other cell types. Interestingly, LSAMP, as an established gene in the development of OS shows high expression in osteoblastic OS cells and CAFs but low in other cells such as osteoclasts. Our findings here highlight the heterogeneity of OS cells and cell-type-dependent DEGs which have potential as therapeutic targets in OS.


Subject(s)
Bone Neoplasms , Osteosarcoma , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Endothelial Cells/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Osteosarcoma/pathology , RNA-Seq
17.
J Cell Physiol ; 237(3): 1711-1719, 2022 03.
Article in English | MEDLINE | ID: mdl-34893976

ABSTRACT

Siglec-15, a Siglec family member and type-1 transmembrane protein, is expressed mainly in human macrophages and dendritic cells. It is comprised of a lysine-containing transmembrane domain, two extracellular immunoglobulin (Ig)-like domains and a short cytoplasmic domain. Siglec-15 is highly conserved in vertebrates and acts as an immunoreceptor. It exerts diverse functions on osteoclast physiology as well as the tumor microenvironment. Siglec-15 interacts with adapter protein DAP12 - Syk signaling pathway to regulate the RANKL/RANK-mediated PI3K, AKT, and ERK signaling pathways during osteoclast formation in vitro. Consistently, the lack of the Siglec-15 gene in mice leads to impaired osteoclast activity and osteopetrosis in vivo. In addition, Siglec-15 is expressed by tumor-associated macrophages (TAMs) and regulates the tumor microenvironment by activating the SYK/MAPK signaling pathway. Interestingly, Siglec-15 shares sequence homology to programmed death-ligand 1 (PD-L1) and has a potential immune-regulatory role in cancer immunology. Thus, Siglec-15 might also represent an alternative target for the treatment of cancers that do not respond to anti-PD-L1/PD-1 immunotherapy. Understanding the role of Siglec-15 in osteoclastogenesis and the tumor microenvironment will help us to develop new treatments for bone disorders and cancer.


Subject(s)
Immunoglobulins , Neoplasms , Animals , Biology , Immunoglobulins/metabolism , Membrane Proteins/metabolism , Mice , Molecular Structure , Neoplasms/metabolism , Osteoclasts/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Tumor Microenvironment/genetics
18.
Cell Prolif ; 54(2): e12974, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33382511

ABSTRACT

Signal transducer and activator of transcription 3 (STAT3) is one of seven STAT family members involved with the regulation of cellular growth, differentiation and survival. STAT proteins are conserved among eukaryotes and are important for biological functions of embryogenesis, immunity, haematopoiesis and cell migration. STAT3 is widely expressed and located in the cytoplasm in an inactive form. STAT3 is rapidly and transiently activated by tyrosine phosphorylation by a range of signalling pathways, including cytokines from the IL-6 family and growth factors, such as EGF and PDGF. STAT3 activation and subsequent dimer formation initiates nuclear translocation of STAT3 for the regulation of target gene transcription. Four STAT3 isoforms have been identified, which have distinct biological functions. STAT3 is considered a proto-oncogene and constitutive activation of STAT3 is implicated in the development of various cancers, including multiple myeloma, leukaemia and lymphomas. In this review, we focus on recent progress on STAT3 and osteosarcoma (OS). Notably, STAT3 is overexpressed and associated with the poor prognosis of OS. Constitutive activation of STAT3 in OS appears to upregulate the expression of target oncogenes, leading to OS cell transformation, proliferation, tumour formation, invasion, metastasis, immune evasion and drug resistance. Taken together, STAT3 is a target for cancer therapy, and STAT3 inhibitors represent potential therapeutic candidates for the treatment of OS.


Subject(s)
Bone Neoplasms/pathology , Osteosarcoma/pathology , STAT3 Transcription Factor/metabolism , Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Cytokines/genetics , Cytokines/metabolism , Drug Resistance, Neoplasm , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Humans , Neoplasm Metastasis , Osteosarcoma/drug therapy , Osteosarcoma/metabolism , Prognosis , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proto-Oncogene Mas , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/chemistry , STAT3 Transcription Factor/genetics
19.
J Cell Physiol ; 236(4): 2800-2816, 2021 04.
Article in English | MEDLINE | ID: mdl-32964459

ABSTRACT

The tumor necrosis factor (TNF)-like core domain of receptor activator of nuclear factor-κB ligand (RANKL) is a functional domain critical for osteoclast differentiation. One of the missense mutations identified in patients with osteoclast-poor autosomal recessive osteopetrosis (ARO) is located in residue methionine 199 that is replaced with lysine (M199K) amid the TNF-like core domain. However, the structure-function relationship of this mutation is not clear. Sequence-based alignment revealed that the fragment containing human M199 is highly conserved and equivalent to M200 in rat. Using site-directed mutagenesis, we generated three recombinant RANKL mutants M200K/A/E (M200s) by replacing the methionine 200 with lysine (M200K), alanine (M200A), and glutamic acid (M200E), representative of distinct physical properties. TRAcP staining and bone pit assay showed that M200s failed to support osteoclast formation and bone resorption, accompanied by impaired osteoclast-related signal transduction. However, no antagonistic effect was found in M200s against wild-type rat RANKL. Analysis of the crystal structure of RANKL predicted that this methionine residue is located within the hydrophobic core of the protein, thus, likely to be crucial for protein folding and stability. Consistently, differential scanning fluorimetry analysis suggested that M200s were less stable. Western blot analysis analyses further revealed impaired RANKL trimerization by M200s. Furthermore, receptor-ligand binding assay displayed interrupted interaction of M200s to its intrinsic receptors. Collectively, our studies revealed the molecular basis of human M199-induced ARO and elucidated the indispensable role of rodent residue M200 (equivalent to human M199) for the RANKL function.


Subject(s)
Mutation, Missense , RANK Ligand/genetics , Animals , Bone Resorption , Hydrophobic and Hydrophilic Interactions , Mice , Mice, Inbred C57BL , Mutagenesis, Site-Directed , Osteoclasts/metabolism , Osteogenesis , Protein Conformation , Protein Folding , Protein Stability , RANK Ligand/chemistry , RANK Ligand/metabolism , RAW 264.7 Cells , Rats , Signal Transduction , Structure-Activity Relationship
20.
J Bone Miner Res ; 35(8): 1582-1596, 2020 08.
Article in English | MEDLINE | ID: mdl-32286705

ABSTRACT

Excessive osteoclast (OC) activity together with relatively weak osteoblast (OB) function are strongly connected to osteolytic diseases, including osteoporosis, tumor-induced osteolysis, and inflammatory bone erosion. Very few natural products or compounds have been shown to exert therapeutic effects on both OCs and OBs, limiting the potential development of natural compounds for clinical application. Hymenialdisine (HMD) is a marine sponge-derived natural inhibitor of protein kinases with previously reported anti-osteoarthritis and anti-cancer properties. However, the roles of HMD in OCs, OBs, and osteoporosis have not yet been well established. Here, we found that HMD not only suppressed osteoclastogenesis but also promoted OB differentiation. HMD exerted dose-dependent inhibitory effects on RANKL-induced OC formation, bone resorption, and OC-specific gene expression. These strong inhibitory effects were achieved by blocking the NF-κB and MAPK signaling pathways, and NFATc1 expression. In addition, HMD potentially stimulated OB differentiation by activating alkaline phosphatase (ALP) and enhancing OB matrix mineralization. We found that HMD can activate the glycogen synthase kinase 3ß (GSK-3ß)/ß-catenin/T-cell factor (TCF)/lymphoid enhancer factor (LEF) signaling pathway to upregulate Runx-2 expression, the main transcription factor in this pathway. Increased expression of Runx-2 was also correlated with expression of the OB-specific genes Col1a1 and osteocalcin (Ocn). Furthermore, we also evaluated the therapeutic potential of HMD in a female C57BL/6j mouse model of ovariectomy (OVX)-induced systematic bone loss. HMD showed a remarkable ability to prevent decreases in bone volume (BV/TV) and trabecular thickness (Tb.Th). In summary, HMD exerts notable effects in inhibiting OC-related osteolysis and enhancing OB-induced ossification, suggesting the potential application of HMD in osteoporosis treatment. © 2020 American Society for Bone and Mineral Research.


Subject(s)
Biological Products , Bone Resorption , Osteolysis , Animals , Azepines , Bone Resorption/drug therapy , Cell Differentiation , Estrogens , Female , Glycogen Synthase Kinase 3 , Mice , Mice, Inbred C57BL , NF-kappa B , NFATC Transcription Factors , Osteoblasts , Osteoclasts , Osteogenesis , Pyrroles , RANK Ligand
SELECTION OF CITATIONS
SEARCH DETAIL
...