Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
Add more filters










Publication year range
2.
Bioresour Technol ; 394: 130211, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38113950

ABSTRACT

This study investigated the feasibility of a high-loading process with less water consumption for the valorization of wet biomass waste through hydrothermal carbonization (HTC) with and without N2 pressurization from the views of water saving, carbon utilization, and energy recovery. The results revealed that reducing the liquid-to-solid ratio from 10 to 2.5 significantly improved carbon storage in hydrochar due to preferential carbon sequestration as the solid phase (59.9%) instead of being lost in the liquid phase (∼10%). The pressurized HTC process resulted in a higher stability hydrochar through the devolatilization of secondary char that was less stable, yet resulted in âˆ¼10% 15% more carbon transformation to the gas phase. A cost-benefit analysis further demonstrated the potential of the high-loading HTC process for enhancing energy recovery while minimizing energy consumption during hydrochar production from high-moisture yard waste.


Subject(s)
Carbon , Water , Temperature , Physical Phenomena , Biomass
3.
Bioresour Technol ; 387: 129705, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37611813

ABSTRACT

With rising of harmful algae blooming and toxin exposure, practical utilization of harmful algae has been developed. This work aimed to magnetically harvest Microcystis aeruginosa (MA) using iron oxides and investigate the feasibility of algae/iron oxides mixture as feedstock in pyrolytic platform to produce syngas and metal biochar. Carbon dioxide (CO2) was used as a feeding gas to enhance the production efficiency of syngas and also functioned pH controller for better MA harvesting and toxin removal. CO2 support brought multiple benefits: magnetite (Fe3O4) and maghemite (γ-Fe2O3) recovered MA in a relatively short period of time (∼1 min), the recovered biomass generated 34-fold increased carbon monoxide, and metal biochar adsorbed higher amount of toxin from MA (2.8-fold). Pyrolytic utilization of harmful algae supported by CO2 and iron oxides could be one of promising techniques for evolution of metal biochar to remove toxin, while efficiently recover biomass and enhance syngas production.


Subject(s)
Carbon Dioxide , Microcystis , Biomass , Carbon Monoxide , Metals , Iron
4.
Sci Total Environ ; 902: 166064, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37544460

ABSTRACT

Heavy metal and arsenic (HM-As) contamination at the soil-food crop interface is a threat to food security/safety and public health worldwide. The potential ecotoxicological effects of HM-As on food crops can perturb normal physiological, biochemical, and molecular processes. To protect food safety and human health, nanoparticles (NPs) can be applied to seed priming and soil amendment, as 'manifestation of hormesis' to modulate HM-As-induced oxidative stress in edible crops. This review provides a comprehensive overview of NPs-mediated alleviation of HM-As stress in food crops and resulting hormetic effects. The underlying biochemical and molecular mechanisms in the amelioration of HM-As-induced oxidative stress is delineated by covering the various aspects of the interaction of NPs (e.g., magnetic particles, silicon, metal oxides, selenium, and carbon nanotubes) with plant microbes, phytohormone, signaling molecules, and plant-growth bioregulators (e.g., salicylic acid and melatonin). With biotechnical advances (such as clustered regularly interspaced short palindromic repeats (CRISPR) gene editing and omics), the efficacy of NPs and associated hormesis has been augmented to produce "pollution-safe designer cultivars" in HM-As-stressed agriculture systems. Future research into nanoscale technological innovations should thus be directed toward achieving food security, sustainable development goals, and human well-being, with the aid of HM-As stress resilient food crops.


Subject(s)
Arsenic , Metals, Heavy , Nanoparticles , Nanotubes, Carbon , Humans , Arsenic/toxicity , Arsenic/analysis , Public Health , Hormesis , Metals, Heavy/toxicity , Metals, Heavy/analysis , Crops, Agricultural , Soil/chemistry , Food Safety , Food Security
5.
Environ Int ; 176: 107989, 2023 06.
Article in English | MEDLINE | ID: mdl-37245444

ABSTRACT

Sustainable management of ever-increasing organic biowaste and arable soil contamination by potentially toxic elements are of concern from both environmental and agricultural perspectives. To tackle the waste issue of crawfish shells and simultaneously minimize the threat of arsenic (As) and lead (Pb) to human health, a pot trial was conducted using chitin (CT), crawfish shell biochar (CSB), crawfish shell powder (CSP), and CT-CSB composite to compare their remediation efficiencies in As/Pb co-contaminated soil. Results demonstrated that addition of all amendments decreased Pb bioavailability, with the greatest effect observed for the CT-CSB treatment. Application of CSP and CSB increased the soil available As concentration, while significant decreases were observed in the CT and CT-CSB treatments. Meanwhile, CT addition was the most effective in enhancing the soil enzyme activities including acid phosphatase, α-glucosidase, N-acetyl-ß-glucosaminidase, and cellobiohydrolase, whereas CSB-containing treatments suppressed the activities of most enzymes. The amendments altered the bacterial abundance and composition in soil. For instance, compared to the control, all treatments increased Chitinophagaceae abundance by 2.6-4.7%. The relative abundance of Comamonadaceae decreased by 1.6% in the CSB treatment, while 2.1% increase of Comamonadaceae was noted in the CT-CSB treatment. Redundancy and correlation analyses (at the family level) indicated that the changes in bacterial community structure were linked to bulk density, water content, and As/Pb availability of soils. Partial least squares path modeling further indicated that soil chemical property (i.e., pH, dissolved organic carbon, and cation exchange capacity) was the strongest predictor of As/Pb availability in soils following amendment application. Overall, CT-CSB could be a potentially effective amendment for simultaneously immobilizing As and Pb and restoring soil ecological functions in contaminated arable soils.


Subject(s)
Arsenic , Metals, Heavy , Soil Pollutants , Humans , Arsenic/analysis , Lead/analysis , Biological Availability , Chitin , Rhizosphere , Metals, Heavy/analysis , Charcoal/chemistry , Soil/chemistry , Bacteria , Soil Pollutants/analysis , Cadmium/analysis
6.
Chemosphere ; 329: 138665, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37044148

ABSTRACT

One of the main challenges of biochar application for environmental cleanup is rise of pH in water or soil due to high ash and alkali metal contents in the biochar. While this intrinsic property of biochar is advantageous in alleviating soil and water acidity, it severely impairs the affinity of biochar toward anionic contaminants such as arsenic. This study explored a technical approach that can reduce the basicity of lignin-based biochar by utilizing FeCl3 during production of biochar. Three types of biochar were produced by co-pyrolyzing feedstock composed of different combinations of lignin, red mud (RM), and FeCl3, and the produced biochar samples were applied to adsorption of As(V). The biochar samples commonly possessed porous carbon structure embedded with magnetite (Fe3O4) particles. The addition of FeCl3 in the pyrolysis feedstock had a notable effect on reducing basicity of the biochar to yield significantly lower solution pH values than the biochar produced without FeCl3 addition. The extent of As(V) removal was also closely related to the final solution pH and the greatest As(V) removal (>77.6%) was observed for the biochar produced from co-pyrolysis of lignin, RM, and FeCl3. The results of adsorption kinetics and isotherm experiments, along with x-ray spectroscopy (XPS), strongly suggested adsorption of As(V) occurred via specific chemical reaction (chemisorption) between As(V) and Fe-O functional groups on magnetite. Thus, the overall results suggest the use of FeCl3 is a feasible practical approach to control the intrinsic pH of biochar and impart additional functionality that enables effective treatment of As(V).


Subject(s)
Lignin , Water Pollutants, Chemical , Ferrosoferric Oxide , Adsorption , Charcoal/chemistry , Water , Soil , Water Pollutants, Chemical/chemistry
7.
Sci Total Environ ; 868: 161655, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36649775

ABSTRACT

Crop residues are representative agricultural waste materials, massively generated in the world. However, a large fraction of them is currently being wasted, though they have a high potential to be used as a value-added carbon-rich material. Also, the applications of carbon-rich materials from agricultural waste to industries can have economic benefit because waste-derived carbon materials are considered inexpensive waste materials. In this review, valorization methods for crop residues as carbon-rich materials (i.e., biochars) and their applications to industrial toxic gas removals are discussed. Applications of crop residue biochars to toxic gas removal can have significant environmental benefits and economic feasibility. As such, this review discussed the technical advantages of the use of crop residue biochars as adsorbents for hazardous gaseous pollutants and greenhouse gases (GHGs) stemmed from combustion of fossil fuels and the different refinery processes. Also, the practical benefits from the activation methods in line with the biochar properties were comprehensively discussed. The relationships between the physico-chemical properties of biochars and the removal mechanisms of gaseous pollutants (H2S, SO2, Hg0, and CO2) on biochars were also highlighted in this review study. Porosity controls using physical and chemical activations along with the addition of specific functional groups and metals on biochars have significantly contributed to the enhancement of flue gas adsorption. The adsorption capacity of biochar for each toxic chemical was in the range of 46-76 mg g-1 for H2S, 40-182 mg g-1 for SO2, 80-952 µg g-1 for Hg0, and 82-308 mg g-1 CO2, respectively. This helps to find suitable activation methods for adsorption of the target pollutants. In the last part, the benefits from the use of biochars and the research directions were prospectively provided to make crop residue biochars more practical materials in adsorption of pollutant gases.


Subject(s)
Environmental Pollutants , Mercury , Gases , Carbon Dioxide , Charcoal/chemistry , Carbon , Adsorption
8.
Environ Pollut ; 321: 121080, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36702428

ABSTRACT

Medical wastes include all solid and liquid wastes that are produced during the treatment, diagnosis, and immunisation of animals and humans. A significant proportion of medical waste is infectious, hazardous, radioactive, and contains potentially toxic elements (PTEs) (i.e., heavy metal (loids)). PTEs, including arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg), are mostly present in plastic, syringes, rubber, adhesive plaster, battery wastes of medical facilities in elemental form, as well as oxides, chlorides, and sulfates. Incineration and sterilisation are the most common technologies adopted for the safe management and disposal of medical wastes, which are primarily aimed at eliminating deadly pathogens. The ash materials derived from the incineration of hazardous medical wastes are generally disposed of in landfills after the solidification/stabilisation (S/S) process. In contrast, the ash materials derived from nonhazardous wastes are applied to the soil as a source of nutrients and soil amendment. The release of PTEs from medical waste ash material from landfill sites and soil application can result in ecotoxicity. The present study is a review paper that aims to critically review the dynamisms of PTEs in various environmental media after medical waste disposal, the environmental and health implications of their poor management, and the common misconceptions regarding medical waste.


Subject(s)
Medical Waste Disposal , Medical Waste , Mercury , Metals, Heavy , Refuse Disposal , Animals , Humans , Incineration , Metals, Heavy/analysis , Hazardous Waste/analysis , Solid Waste/analysis
9.
J Hazard Mater ; 443(Pt B): 130203, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36327835

ABSTRACT

Contamination of paddy soils with potentially toxic elements (PTEs) has become a severe environmental issue. Application of functionalized biochar for rice cultivation has been proposed as an effective means to reduce environmental risks of these PTEs in paddy soils. This work was undertaken to seek the positive effects of a rice husk-derived silicon (Si)-rich biochar (Si-BC) and a pig carcass-derived phosphorus (P)-rich biochar (P-BC), as well as their Fe-modified biochars (Fe-Si-BC and Fe-P-BC) on the enzyme activity and PTE availability in an As-Cd-Pb-contaminated soil. A rice cultivation pot trial was conducted using these functionalized biochars as soil amendments for the alleviation of PTE accumulation in rice plants. Results showed that Si-BC decreased the concentrations of As in rice grain and straw by 59.4 % and 61.4 %, respectively, while Fe-Si-BC significantly (P < 0.05) enhanced plant growth, increasing grain yield (by 38.6 %). Fe-Si-BC significantly (P < 0.05) elevated Cd and Pb accumulation in rice plants. P-BC enhanced the activities of dehydrogenase, catalase, and urease, and reduced grain-Pb and straw-Pb by 49.3 % and 43.2 %, respectively. However, Fe-P-BC reduced plant-As in rice grain and straw by 12.2 % and 51.2 %, respectively, but increased plant-Cd and plant-Pb. Thus, Fe-modified Si- and P-rich biochars could remediate paddy soils contaminated with As, and enhance the yield and quality of rice. Application of pristine P-rich biochar could also be a promising strategy to remediate the Pb-contaminated paddy soils and limit Pb accumulation in rice.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Swine , Animals , Cadmium/analysis , Soil , Arsenic/analysis , Silicon , Lead , Iron/analysis , Phosphorus , Soil Pollutants/analysis , Charcoal , Edible Grain/chemistry
10.
J Hazard Mater ; 443(Pt B): 130308, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36444051

ABSTRACT

Rice grown in soils contaminated with arsenic (As) and lead (Pb) can cause lower rice yield and quality due to the toxic stress. Herein, we examined the role of functionalized biochars (raw phosphorus (P)-rich (PBC) and iron (Fe)-modified P-rich (FePBC)) coupled with different irrigation regimes (continuously flooded (CF) and intermittently flooded (IF)) in affecting rice yield and accumulation of As and Pb in rice grain. Results showed that FePBC increased the rice yield under both CF (47.4%) and IF (19.6%) conditions, compared to the controls. Grain As concentration was higher under CF (1.94-2.42 mg kg-1) than IF conditions (1.56-2.31 mg kg-1), whereas the concentration of grain Pb was higher under IF (0.10-0.76 mg kg-1) than CF (0.12-0.48 mg kg-1) conditions. Application of PBC reduced grain Pb by 60.1% under CF conditions, while FePBC reduced grain As by 12.2% under IF conditions, and increased grain Pb by 2.9 and 6.6 times under CF and IF conditions, respectively, compared to the controls. Therefore, application of the multiple-functionalized biochar can be a promising strategy for increasing rice yield and reducing the accumulation of As in rice grain, particularly under IF conditions, whereas it is inapplicable for remediation of paddy soils contaminated with Pb.


Subject(s)
Arsenic , Oryza , Soil , Lead , Edible Grain
11.
Sci Total Environ ; 857(Pt 2): 159584, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36270372

ABSTRACT

Land use impacts from agriculture, industrialization, and human population should be considered in surface water quality management. In this study, we utilized an integrated statistical analysis approach mainly including a seasonal Mann-Kendall test, clustering analysis, self-organizing map, Boruta algorithm, and positive matrix factorization to the assessment of the interactions between land use types and water quality in a typical catchment in the Huai River Basin, China, over seven years (2012-2019). Spatially, water quality was clustered into three groups: upstream, midstream, and downstream/mainstream areas. The water quality of upstream sites was better than of mid-, down-, and mainstream. Temporally, water quality did not change significantly during the study period. However, the temporal variation in water quality of up-, down-, and mainstream areas was more stable than in the midstream. The interactions between land use types and water quality parameters at the sub-basin scale varied with seasons. Increasing forest/grassland areas could substantially improve the water quality during the wet season, while nutrients such as phosphorus from cropland and developed land was a driver for water quality deterioration in the dry season. Water area was not a significant factor influencing the variations of ammonia nitrogen (NH3-N) and total phosphorus (TP) in the wet or dry season, due to the intensive dams and sluices in study area. The parameters TP, and total nitrogen (TN) were principally linked with agricultural sources in the wet and dry seasons. The parameters NH3-N in the dry season, and chemical oxygen demand (CODCr) in the wet season were mainly associated with point source discharges. Agricultural source, and urban point source discharges were the main causes of water quality deterioration in the study area. Collectively, these results highlighted the impacts of land use types on variations of water quality parameters in the regulated basin.


Subject(s)
Water Pollutants, Chemical , Water Quality , Humans , Seasons , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Phosphorus/analysis , Nitrogen/analysis , China
12.
Sci Total Environ ; 856(Pt 1): 158972, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36179838

ABSTRACT

In the recent decades, the area of seasonal water (SEW) has substantially increased at the global scale. To evaluate nutrient dynamics in aquatic ecosystems, previous studies have analyzed the determining factors of sediment nutrient content and stoichiometry on whole sediment profiles without depth separation on SEW sites. Such a methodology assumes that SEW sediment is a uniform unit and its nutrient dynamics are regulated by the same mechanism at various depths (uniformity assumption). We tested this assumption using sediment samples from six depth increments of 154 sediment profiles (1 m depth) on SEW sites at Shengjin Lake in subtropical China. We measured sediment total nitrogen (STN), total phosphorus (STP), nutrient fractions, and the molar ratio of STN to STP (RSNP), and investigated their determining factors at various depths. STN, STP, and RSNP were averaged at 1.34 g/kg, 0.55 g/kg, and 5.43, respectively, and all gradually decreased with depth. STN was positively affected by moisture and flooding duration in all depth increments. Instead, the major determining factors of STP changed from particle size at 0-20 cm of depth to pH and electrical conductivity at 30-100 cm of depth. These vertical patterns have close connections with sediment nutrient fractions since sediment N fractions did not shift along profile depths (i.e., over 99 % of STN was organic N) but sediment P fractions did (the percentage of Fe-P and Al-P decreased by 6.25 % but those of Ca-P increased by 4.31 % along the sediment depth gradient). The major determining factors of RSNP showed no obvious vertical patterns because they frequently varied along depth gradients. The results demonstrate that SEW sediment is not a uniform unit and the determining factors of nutrient dynamics change with depth. Our study highlights the importance of improved methodological reflection in studies addressing sediment nutrient dynamics on SEW sites.


Subject(s)
Ecosystem , Geologic Sediments , Geologic Sediments/chemistry , Water , Seasons , Phosphorus/analysis , Lakes/chemistry , Nitrogen/analysis , Nutrients , China
13.
Chemosphere ; 319: 136536, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36167204

ABSTRACT

Nano Fe(III) oxide (FO) was used as an amendment material in CO2-assisted pyrolysis of spent coffee grounds (SCG) and its impacts on the syngas (H2 & CO) generation and biochar adsorptive properties were investigated. Amendment of FO led to 153 and 682% increase of H2 and CO in pyrolytic process of SCG, respectively, which is deemed to arise from enhanced thermal cracking of hydrocarbons and oxygen transfer reaction mediated by FO. Incorporation of FO successfully created porous structure in the produced biochar. The adsorption tests revealed that the biochar exhibited bi-functional capability to remove both positively charged Cd(II) and Ni(II), and negatively charged Sb(V). The adsorption of Cd(II) and Ni(II) was hardly deteriorated in the multiple adsorption cycles, and the adsorption of Sb(V) was further enhanced through formation of surface ternary complexes. The overall results demonstrated nano Fe(III) oxide is a promising amendment material in CO2-assisted pyrolysis of lignocellulosic biomass for enhancing syngas generation and producing functional biochar.


Subject(s)
Coffee , Oxides , Coffee/chemistry , Carbon Dioxide/chemistry , Adsorption , Pyrolysis , Cadmium , Charcoal/chemistry , Metals
14.
Environ Int ; 168: 107484, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36049376

ABSTRACT

Biochar amendment to paddy soils was promising to mitigate mercury (Hg) accumulation in rice; thus, it was applied to reduce human Hg exposure via rice consumption. However, how biochar affects Hg mobilization and MeHg formation in soil under changed redox potential (Eh) conditions remained unknown. Here, we explored the change of dissolved total Hg (DTHg) and dissolved MeHg (DMeHg), and their controlling biogeochemical factors in a soil with(out) biochar amendment under changing Eh conditions using biogeochemical microcosm. Biochar amendment resulted in a widen Eh range (-300 to 400 mV) compared to the control (-250 to 350 mV), demonstrating that biochar promoted reduction-oxidization reactions in soil. Biochar amendment enhanced Hg mobilization by mediating reductive dissolution of Fe/Mn (hydr)oxides. Thus, the increased Hg availability promoted MeHg formation in the soils. Biochar amendment changed the soil organic matter (SOM) composition. Positive correlations between the relative abundance of LIPID (lipids, alkanes/alkenes), ALKYL (alkylaromatics), and suberin and MeHg concentrations indicate that these SOM groups might be related to MeHg formation. Biochar enhanced the releasing and methylation of Hg by promoting the mobilization of Fe(oxyhydr)oxides and alternation of carbon chemistry under dynamic Eh conditions. There is an unexpected environmental risk associated with biochar application to paddy soils under dynamic Eh condition, and one should be aware this risk when applying biochar aiming to minimize human Hg exposure health risks via rice consumption.

15.
Environ Pollut ; 313: 120099, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36084740

ABSTRACT

Rare earth elements (REEs) concentrated in soils have attracted increasing attention about their impact on soil health as emerging contaminants. However, the sources of REEs enriched in soils are diverse and need to be further investigated. Here, surface soil samples were collected from southern Jiangxi Province, China. REEs contents and soil physicochemical properties were determined, and cerium (Ce) and europium (Eu) anomalies were calculated. Moreover, we established a model to further identify the main sources of REEs accumulation in the studied soils. Results show that the abundance of soil REEs reveals larger spatial variation, suggesting spatially heterogeneous distribution of REEs. The median content of light REEs in soils (154.5 mg kg-1) of the study area was higher than that of heavy REEs and yttrium (35.8 mg kg-1). In addition, most of the soil samples present negative Ce anomalies and all the soil samples present negative Eu anomalies implying the combined effect of weathering and potential exogenous inputs on soil REEs. Positive matrix factorization modeling reveals that soil REEs content is primarily influenced by soil parent materials. Potential anthropogenic sources include mining-related leachate, traffic exhaust, and industrial dust. These results demonstrate that the identification of sources of soil REEs is an important starting point for targeted REEs sources management and regulation of excessive and potentially harmful REEs levels in the soil.


Subject(s)
Cerium , Metals, Rare Earth , Soil Pollutants , Dust , Europium , Metals, Rare Earth/analysis , Mining , Soil/chemistry , Soil Pollutants/analysis , Yttrium
16.
Sci Total Environ ; 853: 158635, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36087673

ABSTRACT

Potentially toxic elements (PTEs) can be released during mining operations and ore processing. The pollution and health risk related to PTEs in total suspended particulates (TSPs) around the largest polymetallic rare earth mining area (Bayan Obo) and smelting area (Baotou) in Inner Mongolia, China, were evaluated. PTEs in the hair of the elderly living in these two areas and a reference area (Hohhot) were also examined. Relationships between PTEs in TSPs and hair with categorical factors (location, gender, etc.) were also modeled. Multivariate statistical analyses were carried out to analyze the possible sources of the PTEs in TSPs. The bubble maps of the concentrations of PTEs indicated that high concentrations of PTEs were near the industrial area where smelting plants and power plants were located. In addition, health risks were assessed for adults in the mining and smelting area. The carcinogenic risk of Cr was high for residents in the study areas. Also, the residents were exposed to a non-carcinogenic risk of Ni. Significant mean value differences were observed between PTEs in the hair of the elderly in Baotou and Hohhot. Results of the linear regression model indicated that around 31 % of the Pb in hair could be explained by the linear regression model, it could be affected by Ni and Zn in TSPs, but location, gender, and sampling time showed no significant contribution. Age was not significantly associated with the PTEs levels in hair in Baotou and Bayan Obo. The results provide important scientific evidence for a better understanding of the effects of PTEs in TSPs in polymetallic ore mining and smelting areas.


Subject(s)
Metals, Heavy , Metals, Rare Earth , Soil Pollutants , Adult , Humans , Aged , Biological Monitoring , Lead/analysis , Environmental Monitoring/methods , Mining , Metals, Rare Earth/analysis , Dust/analysis , China , Metals, Heavy/analysis , Risk Assessment , Soil Pollutants/analysis , Soil
17.
Sci Total Environ ; 850: 158087, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35981572

ABSTRACT

The release dynamics and mobilization of geogenic Ni, Co, and Cr in serpentine paddy soils under fluctuating redox conditions have not yet been well studied. Here we investigated the release dynamics of Cr, Co, and Ni and controlling factors (e.g., Fe, Mn, Mg, Cl-, PO43-, SO42-, and dissolved organic carbon (DOC)) in a geogenic-contaminated serpentine soil under wide range of redox potential (EH) changes. The effects of re-oxidation process have been also investigated. The soil was incubated for 28 days and EH was controlled from oxidation (+200 mV) to reduction (-200 mV) and re-oxidation (+240 mV) using a microcosm setup in duplicates. The slurry pH increased, along with decreasing EH. The average concentration of dissolved Co (17.1-23.6 µg L-1) decreased under low EH/high pH and vice versa. The average concentration of dissolved Cr decreased sharply from 624 µg L-1 to 54.4 µg L-1 with decreasing EH from +200 mV to 0 mV and the associated increase of pH from 7.8 to 8.5; then, it was constant around 24.5 µg L-1. Concentration of dissolved Ni was lower (73.5-84.6 µg L-1) under high EH at the first week of incubation; then, increased to 108.5 µg L-1 under low EH (-200 mV); thereafter, increased more at the end up to 124.5 µg L-1 at high EH (+240 mV), because of the pH decrease. A factor analysis identified that Cr and Co formed one group with Mn and Mg, while Ni was clustered together with Cl-, DOC, and SO42-. This indicates that the redox-induced release dynamic of Cr and Co was mainly governed by MnMg compounds, while the release of Ni was mainly affected by the aliphatic compounds of DOC and the redox chemistry of chlorides and sulfur in this soil. The re-oxidation increased the mobilization of Ni and Co and did not affect the release of Cr. These findings suggest that the redox-induced mobilization of geogenic Co, Ni, and Cr from soil to water in serpentine rice soils should be considered due to the high solubility and thus the associated bioavailability and potential environmental and human health risks, when such metal-enriched soils will be used for agricultural flood-dry cycle systems.


Subject(s)
Soil Pollutants , Humans , Oxidation-Reduction , Soil/chemistry , Soil Pollutants/analysis , Sulfur , Water/analysis
18.
Environ Pollut ; 312: 119920, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35977635

ABSTRACT

This study investigated catalytic ozone oxidation using a sawdust char (SDW) catalyst to remove hazardous toluene emitted from the chemical industry. The catalyst properties were analyzed by proximate, ultimate, nitrogen adsorption-desorption isotherms, Fourier-transform infrared, and X-ray photoelectron spectroscopy analyses. In addition, hydrogen-temperature programmed reduction experiments were conducted to analyze the catalyst properties. The specific area and formation of micropores of SDC were improved by applying KOH treatment. MnOx/SDC-K3 exhibited a higher toluene removal efficiency of 89.7% after 100 min than MnOx supported on activated carbon (MnOx/AC) with a removal efficiency of 6.6%. The higher (Oads (adsorbed oxygen)+Ov(vacancy oxygen))/OL (lattice oxygen) and Mn3+/Mn4+ ratios of MnOx/SDC-K3 than those of MnOx/AC seemed to be important for the catalytic oxidation of toluene.

19.
Sci Total Environ ; 845: 157168, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35817120

ABSTRACT

Nanoplastics are drawing a significant attention as a result of their propensity to spread across the environment and pose a threat to all organisms. The presence of nanoplastics in water is given attention nowadays as the transit of nanoplastics occurs through the aquatic ecosphere besides terrestrial mobility. The principal removal procedures for macro-and micro-plastic particles are effective, but nanoparticles escape from the treatment, increasing in the water and significantly influencing the society. This critical review is aimed to bestow the removal technologies of nanoplastics from aquatic ecosystems, with a focus on the treatment of freshwater, drinking water, and wastewater, as well as the importance of transit and its impact on health concerns. Still, there exists a gap in providing a collective knowledge on the methods available for nanoplastics removal. Hence, this review offered various nanoplastic removal technologies (microorganism-based degradation, membrane separation with a reactor, and photocatalysis) that could be the practical/effective measures along with the traditional procedures (filtration, coagulation, centrifugation, flocculation, and gravity settling). From the analyses of different treatment systems, the effectiveness of nanoplastics removal depends on various factors, source, size, and type of nanoplastics apart from the treatment method adopted. Combined removal methods, filtration with coagulation offer great scope for the removal of nanoplastics from drinking water with >99 % efficiency. The collected data could serve as base-line information for future research and development in water nanoplastics cleanup.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Ecosystem , Microplastics , Plastics , Water Pollutants, Chemical/analysis
20.
Chemosphere ; 307(Pt 1): 135688, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35843430

ABSTRACT

High-technology rare earth elements (REEs) as emerging contaminants have potentially hazardous risks for human health and the environment. Investigating the sorption of REEs on soils is crucial for understanding their migration and transformation. This study evaluated the sorption mechanisms and influencing factors of the rare earth element yttrium (Y) on paddy soil via integrated batch sorption experiments and theoretical modeling analysis. Site energy distribution theory (SEDT) combined with kinetics, thermodynamics, and isotherm sorption models were applied to illustrate the sorption mechanism. In addition, the effects of phosphorus (P), solution pH, particle size of soil microaggregates, and initial Y content on the sorption processes were evaluated by self-organizing map (SOM) and Boruta algorithm. The sorption kinetic behavior of Y on paddy soil was more consistent with the pseudo-second-order model. Thermodynamic results showed that the Y sorption was a spontaneous endothermic reaction. The generalized Langmuir model well described the isotherm data of Y sorption on heterogeneous paddy soil and soil microaggregates surface. The maximum sorption capacity of Y decreased with increasing soil particle size, which may be related to the number of sorption sites for Y on paddy soil and soil microaggregates, as confirmed by SEDT. The heterogeneity of sorption site energy for Y was the highest in the original paddy soil compared with the separated soil microaggregates. The SOM technique and Boruta algorithm highlighted that the initial concentration of Y and coexisting phosphorus played essential roles in the sorption process of Y, indicating that the addition of phosphate fertilizer may be an effective way to reduce the Y bioavailability in paddy soil in practice. These results can provide a scientific basis for the sustainable management of soil REEs and a theoretical foundation for the remediation of REEs-contaminated soils.


Subject(s)
Metals, Rare Earth , Soil Pollutants , Adsorption , Fertilizers/analysis , Humans , Metals, Rare Earth/analysis , Phosphates/analysis , Phosphorus , Soil/chemistry , Soil Pollutants/analysis , Yttrium/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...