Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
BMC Anesthesiol ; 24(1): 276, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112946

ABSTRACT

INTRODUCTION: Early identification of patients with sepsis at high risk of death remains a challenge, and whether brain natriuretic peptide (BNP) or N-terminal pro-B-type natriuretic peptide (NT-proBNP) has a prognostic effect on patients with sepsis is controversial. Here, we clarified the prognostic value of BNP and NT-proBNP and sought to establish suitable cutoff values and intervals. METHODS: We searched five databases to identify studies that met the inclusion criteria. The primary outcomes were the pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), area under the curve (AUC), and corresponding 95% credible interval (95% CI) of BNP and NT-proBNP. The secondary outcomes were the sensitivity and specificity of BNP or NT-proBNP in subgroup analyses. RESULTS: Forty-seven studies were included in our meta-analysis. The pooled sensitivity of NT-proBNP (0.77 [0.68, 0.84]) was weaker than that of BNP (0.82 [0.76, 0.87]), the pooled specificity of NT-proBNP (0.70 [0.60, 0.77]) was less than that of BNP (0.77 [0.71, 0.82]), and the AUC of BNP (0.87 [0.83-0.89]) was greater than that of NT-proBNP (0.80 (0.76-0.83]). The results of the subgroup analysis showed that the cutoff range of 400-800 pg/mL for BNP had high sensitivity (0.86 [0.74-0.98]) and specificity (0.87 [0.81-0.93]) and was probably the most appropriate cutoff range. CONCLUSIONS: Elevated levels of BNP and NT-proBNP were significantly related to the mortality of patients with sepsis and had a moderate prognostic value in predicting the mortality of patients with sepsis. In addition, our meta-analysis preliminarily established appropriate cutoff values for BNP and NT-proBNP.


Subject(s)
Biomarkers , Natriuretic Peptide, Brain , Peptide Fragments , Sepsis , Humans , Natriuretic Peptide, Brain/blood , Sepsis/mortality , Sepsis/blood , Sepsis/diagnosis , Biomarkers/blood , Peptide Fragments/blood , Prognosis , Predictive Value of Tests , Sensitivity and Specificity
3.
Phys Med Biol ; 69(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38657628

ABSTRACT

Although the U-shaped architecture, represented by UNet, has become a major network model for brain tumor segmentation, the repeated convolution and sampling operations can easily lead to the loss of crucial information. Additionally, directly fusing features from different levels without distinction can easily result in feature misalignment, affecting segmentation accuracy. On the other hand, traditional convolutional blocks used for feature extraction cannot capture the abundant multi-scale information present in brain tumor images. This paper proposes a multi-scale feature-aligned segmentation model called GMAlignNet that fully utilizes Ghost convolution to solve these problems. Ghost hierarchical decoupled fusion unit and Ghost hierarchical decoupled unit are used instead of standard convolutions in the encoding and decoding paths. This transformation replaces the holistic learning of volume structures by traditional convolutional blocks with multi-level learning on a specific view, facilitating the acquisition of abundant multi-scale contextual information through low-cost operations. Furthermore, a feature alignment unit is proposed that can utilize semantic information flow to guide the recovery of upsampled features. It performs pixel-level semantic information correction on misaligned features due to feature fusion. The proposed method is also employed to optimize three classic networks, namely DMFNet, HDCNet, and 3D UNet, demonstrating its effectiveness in automatic brain tumor segmentation. The proposed network model was applied to the BraTS 2018 dataset, and the results indicate that the proposed GMAlignNet achieved Dice coefficients of 81.65%, 90.07%, and 85.16% for enhancing tumor, whole tumor, and tumor core segmentation, respectively. Moreover, with only 0.29 M parameters and 26.88G FLOPs, it demonstrates better potential in terms of computational efficiency and possesses the advantages of lightweight. Extensive experiments on the BraTS 2018, BraTS 2019, and BraTS 2020 datasets suggest that the proposed model exhibits better potential in handling edge details and contour recognition.


Subject(s)
Brain Neoplasms , Image Processing, Computer-Assisted , Semantics , Brain Neoplasms/diagnostic imaging , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging
4.
Materials (Basel) ; 17(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38473671

ABSTRACT

To enhance the comprehensive performance of solid oxide fuel cells (SOFCs) ferritic stainless steel (FSS) interconnectors, a novel approach involving composite electrodeposition and thermal conversion is proposed to prepare Ni-doped Co-Mn composite spinel protective coatings on FSS surfaces. The process involves the composite electrodeposition of a Ni-doped Co-Mn precursor coating, followed by thermal conversion to obtain the Co-Mn-Ni composite spinel coating. Crofer 22H was used as the substrate and orthogonal experiments were designed to investigate the influences of deposition solution pH, stirring rate, cathode current density, and the element content of Mn and Ni on the surface morphology and properties of the composite coatings, respectively. The characterization of the prepared coatings was conducted through macroscopic and microscopic morphology observations of the component surface, energy dispersive spectroscopy (EDS) analysis, and area specific resistance (ASR) testing, etc. Finally, the optimized composite electrodeposition parameters and the Mn-Ni content ratio in the solution were obtained. Experimental results indicated that the composite spinel coating prepared with the optimized process parameters exhibited excellent adhesion to the substrate, and the diffusion and migration of Cr element has been effectively inhibited. Compared with the substrate, the ASR of the coated components has also been decreased simultaneously, which provided an effective method for the surface modification of SOFC FSS interconnectors.

5.
Front Med (Lausanne) ; 10: 1261177, 2023.
Article in English | MEDLINE | ID: mdl-37780572

ABSTRACT

Background: To compare the effect of different amounts of fresh oxygen flow on oxygen reserve in patients undergoing general anesthesia. Methods: Seventy-two patients were enrolled in this quasi-experimental study. Patients were randomly divided into experimental groups with a fresh oxygen flow of 1 L/min, 2 L/min, 4 L/min, and 8 L/min (denoted as G1, G2, G3, and G4, respectively) for 2 min of mask-assisted ventilation. Safe apnea time (SAT) was the primary endpoint; SAT was defined as the time from the cessation of ventilation to the time the patient's pulse oxygen saturation (SpO2) decreased to 90%. Ventilation indicators such as end-tidal oxygen concentration (EtO2), end-tidal carbon dioxide partial pressure (EtCO2), SpO2, and carbon dioxide (CO2) elimination amount, during mask-assisted ventilation, were the secondary endpoints. Results: The SAT of G1, G2, G3, and G4 were 305.1 ± 97.0 s, 315 ± 112.5 s, 381.3 ± 118.6 s, and 359 ± 104.4 s, respectively (p > 0.05). The EtO2 after 2 min of mask-assisted ventilation in groups G1, G2, G3, and G4 were 69.7 ± 8.8%, 75.2 ± 5.0%, 82.5 ± 3.3%, and 86.8 ± 1.5%, respectively (p < 0.05). Also, there was a moderate positive correlation between the fresh oxygen flow and EtO2 (correlation coefficient r = 0.52, 95% CI 0.31-0.67, p < 0.0001). The CO2 elimination in the G1 and G2 groups was greater than that in the G4 group (p < 0.05). There was no significant difference in other indicators among the groups (all p > 0.05). Conclusion: The amount of fresh oxygen flow during mask-assisted ventilation was positively correlated with EtO2. Also, even though there was no significant difference, the patients' oxygen reserves increased with the increase in fresh oxygen flow.

6.
Front Plant Sci ; 14: 1212818, 2023.
Article in English | MEDLINE | ID: mdl-37767301

ABSTRACT

Introduction: While the integrated rice-crayfish (Procambarus clarkii) farming system (IRCFS) is widely developing in China, the widespread use of Unmanned Aerial Spraying Systems (UASS) to protect rice from pests has led to potential pesticide risk for the crayfish in IRCFS. Therefore, it is crucial to examine UASS's spray deposition and drift in IRCFS. Method: In this study, we used the oligonucleotide sequence-tracking / dot-blotting (OSTDB) method to trace pesticide spraying. We collected detailed data not only on spray loss in the paddy fields, but also on spray drift in the breeding ditches caused by upwind and downwind spray areas. Additionally, pesticide residues in the breeding ditches were measured using LC-MS/MS by collecting water samples after pesticide application. Results: The data analysis indicated that the spray loss in the paddy field was significantly greater than that in the breeding ditches. The spray drift in the breeding ditches, caused by the upwind spray area, was seven times higher than that originating from the downwind spray area. Furthermore, the results also revealed that the bulk flow between the paddy fields and the breeding ditches contributed a substantial amount of pesticide residue to the water body in the breeding ditches. In addition, we investigated the acute toxicities of common insecticides using in paddy fields, including thiamethoxam (THI), chlorantraniliprole (CHI), THI·CHI-Mix and THI·CHI-WG. Discussion: The results demonstrated that the spray losses and spray drift from UASS spray applications of these pesticides in IRCFS would not cause acute toxicity or death in crayfish. These findings provide important materials for establishing pesticide application standards and guiding the field testing of droplet deposition and drift in IRCFS.

7.
Front Plant Sci ; 14: 1211104, 2023.
Article in English | MEDLINE | ID: mdl-37469766

ABSTRACT

Air-assisted sprayers are widely used in orchards for pest and disease control. However, air-assisted spray deposition on the abaxial surface of leaves is often limited. In this study, a method to achieve satisfactory spray deposition on the abaxial leaf surface and an assessment of factors that affect abaxial surface deposition were investigated. The effects of leaf angle, wind speed, platform velocity, and nozzle type were assessed. Abaxial surface coverage was significantly affected by leaf angle, wind speed, and nozzle type, of which the leaf angle had the strongest impact. The leaf angle largely determines the abaxial surface area exposed to the wind field. When the abaxial surface is situated leeward, deposition of droplets on the abaxial surface is difficult. Therefore, to improve abaxial surface exposure for field application, the exposure probability of the abaxial surface at different angles between the leaf and the airflow (α) was examined. The relationship was well represented by a logistic growth curve. The exposure probability exceeded 95% when the α value was greater than 5°. The latter finding was verified by conducting a field application in which the deposition efficiency on the abaxial surface (DEAS) was calculated. Adjustment of the airflow angle based on the theoretical value achieved DEAS of 49.9% and 109.3% in the middle and upper layers of the canopy, respectively, whereas the DEAS was less than 30% if the airflow angle was not adjusted. This is caused by the difference in the exposure probability of the back of the leaf. The results provide a reference for adjustment of the wind field of air-assisted sprayers in field applications.

8.
Gland Surg ; 12(6): 816-823, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37441016

ABSTRACT

Background: Hypokalemia is common in hospitalized patients. In fact, untreated hypokalemia is associated with the incidence and mortality of adverse cardiac events. Timely recognition and treatment of these diseases are essential. Indeed, a little research has been conducted on the level of K+ in perioperative patients. In this study, by comparing the changes of K+ from when patients were admitted to hospital and to after they had entered the operating room, we analyzed the related factors of K+ disorder after operating-room entry and identified factors related to the occurrence of perioperative K+ disorder. Methods: This single-center retrospective study included non-cardiac surgery patients who underwent admission blood gas analysis and blood gas analysis upon entering the operating room in the China-Japan Union Hospital of Jilin University between June 2019 and September 2020. Results: Among the 258 patients who underwent non-cardiac surgery with anesthesia, 19 cases (7.4%) were hypokalemic on admission, and 102 cases (39.5%) were hypokalemic after admission to the operating room. The K+ levels after operating-room entry were positively correlated with the K+ concentration at admission (r=0.363; P<0.05). Female sex [odds ratio (OR) =0.451; 95% CI: 0.263-0.775; P=0.004], hypertension (OR =0.499; 95% CI: 0.281-0.885; P=0.017), and preoperative bowel preparation (OR =0.471; 95% CI: 0.258-0.860; P=0.014) were risk factors for hypokalemia for patients after operating-room entry. Conclusions: Hypokalemia was found to be common in patients after operating-room entry. Even patients with normal K+ at admission could have hypokalemia due to undergoing an operation, with female sex, hypertension, and bowel preparation being the risk factors for this condition.

9.
Ying Yong Sheng Tai Xue Bao ; 34(5): 1297-1304, 2023 May.
Article in English | MEDLINE | ID: mdl-37236947

ABSTRACT

To improve the utilization efficiency of nutrients and water and determine the best drip irrigation frequency for long-season tomato cultivation in solar greenhouses, we cultivated tomato grafted seedlings in soil using an integrated water and fertilizer technology: drip irrigation under mulch. Seedlings drip-irrigated with balanced fertilizer (containing 20% N, 20% P2O5, and 20% K2O) and high-K fertilizer (containing 17% N, 8% P2O5, and 30% K2O) once every 12 days were set as control (CK) and that with water once every 12 days as CK1, while other seedling groups, drip-irrigated with a nutrient solution of Yamazaki (1978) formula for tomato, were set as treatments (T1-T4). There were four drip-irrigation frequencies, i.e., once every 2 days (T1), 4 days (T2), 6 days (T3), or 12 days (T4), who received the same total amounts of fertilizer and water over the 12 experimental days. The results showed that, with the decreases of drip irrigation frequency, tomato yield, the accumulation of N, P and K in plant dry matter, the fertilizer partial productivity, and the nutrient utilization rate first increased and then decreased, peaking at the T2 treatment. Compared with CK, under the T2 treatment, plant dry matter accumulation and the accumulation of N, P and K increased by 4.9%, 8.0%, 8.0%, 16.8%, the partial productivity of fertilizer and the utilization efficiency of water increased by 142.8% and 12.2%, the use efficiency of N, P and K was better than CK by 241.4%, 466.6% and 235.9%, respectively, and the tomato yield increased by 12.2%. Under the experimental conditions, drip irrigation with the Yamazaki nutrient solution at a frequency of 4 days could increase the tomato yield, as well as the use efficiency of nutrients and water. Under long-season cultivation, these trends would result in considerable saving of water and fertilizer. Overall, our findings provided a basis for improving the scientific management of water and fertilizers under long-season tomato cultivation in protected facilities.


Subject(s)
Solanum lycopersicum , Fertilizers/analysis , Seasons , Nitrogen/analysis , Soil , Water , Nutrients , Agricultural Irrigation/methods
10.
Front Plant Sci ; 13: 959429, 2022.
Article in English | MEDLINE | ID: mdl-36082299

ABSTRACT

The intelligent pesticide application techniques in orchards have grown rapidly worldwide due to the decrease in agricultural populations and the increase in labor costs. However, whether and how intelligent pesticide application techniques are better than conventional pesticide application remains unclear. Here, we evaluated the performance of the unmanned aircraft vehicle (UAV) and unmanned ground vehicle (UGV) on pesticide application, ecological environment protection, and human's health protection compared to conventional manual methods. We quantified characteristics from the aspects of working effectiveness, efficiency, environmental pollution, water saving and carbon dioxide reduction. The results showed that the UAV application has the advantages of a higher working efficiency and less environmental pollution and natural resource consumption compared to the UGV and conventional manual methods despite of its worse spray performance The UGV application techniques could improve spray performance at the cost of high environmental pollution. The conventional spray gun technique was unfriendly to environmental and resource protection although it showed a better spray performance. Thus, the balance of improving spray performance and controlling environmental pollution is the key to improve the performance of UAV and UGV technology in the future. The study could be useful in the development of intelligent pesticide application techniques and provide scientific support for the transition of intelligent management in orchards.

11.
Front Plant Sci ; 13: 960686, 2022.
Article in English | MEDLINE | ID: mdl-35979071

ABSTRACT

Driven by the demand for efficient plant protection in orchards, the autonomous navigation system for orchards is hereby designed and developed in this study. According to the three modules of unmanned system "perception-decision-control," the environment perception and map construction strategy based on 3D lidar is constructed for the complex environment in orchards. At the same time, millimeter-wave radar is further selected for multi-source information fusion for the perception of obstacles. The extraction of orchard navigation lines is achieved by formulating a four-step extraction strategy according to the obtained lidar data. Finally, aiming at the control problem of plant protection machine, the ADRC control strategy is adopted to enhance the noise immunity of the system. Different working conditions are designed in the experimental section for testing the obstacle avoidance performance and navigation accuracy of the autonomous navigation sprayer. The experimental results show that the unmanned vehicle can identify the obstacle quickly and make an emergency stop and find a rather narrow feasible area when a moving person or a different thin column is used as an obstacle. Many experiments have shown a safe distance for obstacle avoidance about 0.5 m, which meets the obstacle avoidance requirements. In the navigation accuracy experiment, the average navigation error in both experiments is within 15 cm, satisfying the requirements for orchard spray operation. A set of spray test experiments are designed in the final experimental part to further verify the feasibility of the system developed by the institute, and the coverage rate of the leaves of the canopy is about 50%.

12.
BMC Anesthesiol ; 22(1): 100, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35387583

ABSTRACT

BACKGROUND: In recent years, high flow nasal oxygen (HFNO) has been widely used in clinic, especially in perioperative period. Many studies have discussed the role of HFNO in pre- and apneic oxygenation, but their results are controversial. Our study aimed to examine the effectiveness of HFNO in pre- and apneic oxygenation by a meta-analysis of RCTs. METHODS: EMBASE, PUBMED, and COCHRANE LIBRARY databases were searched from inception to July 2021 for relevant randomized controlled trails (RCTs) on the effectiveness of HFNO versus standard facemask ventilation (FMV) in pre- and apenic oxygenation. Studies involving one of the following six indicators: (1) Arterial oxygen partial pressure (PaO2), (2) End expiratory oxygen concentration (EtO2), (3) Safe apnoea time, (4) Minimum pulse oxygen saturation (SpO2min), (5) Oxygenation (O2) desaturation, (6) End expiratory carbon dioxide (EtCO2) or Arterial carbon dioxide partial pressure(PaCO2) were included. Due to the source of clinical heterogeneity in the observed indicators in this study, we adopt random-effects model for analysis, and express it as the mean difference (MD) or risk ratio (RR) with a confidence interval of 95% (95%CI). We conducted a risk assessment of bias for eligible studies and assessed the overall quality of evidence for each outcome. RESULTS: Fourteen RCTs and 1012 participants were finally included. We found the PaO2 was higher in HFNO group than FMV group with a MD (95% CI) of 57.38 mmHg (25.65 to 89.10; p = 0.0004) after preoxygenation and the safe apnoea time was significantly longer with a MD (95% CI) of 86.93 s (44.35 to 129.51; p < 0.0001) during anesthesia induction. There were no significant statistical difference in the minimum SpO2, CO2 accumulation, EtO2 and O2 desaturation rate during anesthesia induction between the two groups. CONCLUSIONS: This systematic review and meta-analysis suggests that HFNO should be considered as an oxygenation tool for patients during anesthesia induction. Compared with FMV, continuous use of HFNO during anesthesia induction can significantly improve oxygenation and prolong safe apnoea time in surgical patients.


Subject(s)
Apnea , Oxygen , Anesthesia, General , Apnea/therapy , Carbon Dioxide , Humans , Masks , Oxygen Inhalation Therapy
13.
Front Surg ; 9: 792697, 2022.
Article in English | MEDLINE | ID: mdl-35284476

ABSTRACT

Background: This study aimed to evaluate the impact of patients' positioning before and after intubation with mechanical ventilation, and after extubation on the lung function and blood oxygenation of patients with morbid obesity, who had a laparoscopic sleeve gastrectomy. Methods: Patients with morbid obesity (BMI ≥ 30 kg/m2, ASA I - II grade) who underwent laparoscopic sleeve gastrectomy at our hospital from June 2018 to January 2019 were enrolled in this prospective study. Before intubation, after intubation with mechanical ventilation, and after extubation, arterial blood was collected for blood oxygenation and gas analysis after posturing the patients at supine position or 30° reverse Trendelenburg position (30°-RTP). Results: A total of 15 patients with morbid obesity were enrolled in this self-compared study. Pulmonary shunt (Qs/Qt) after extubation was significantly lower at 30°-RTP (18.82 ± 3.60%) compared to that at supine position (17.13 ± 3.10%, p < 0.01). Patients' static lung compliance (Cstat), during mechanical ventilation, was significantly improved at 30°-RTP (36.8 ± 6.7) compared to that of those in a supine position (33.8 ± 7.3, p < 0.05). The PaO2 and oxygen index (OI) before and after intubation with mechanical ventilation were significantly higher at 30°-RTP compared to that at supine position, and in contrast, the PA-aO2 before and after intubation with mechanical ventilation was significantly reduced at 30°-RTP compared to that at supine position. Conclusion: During and after laparoscopic sleeve gastrectomy, patients with morbid obesity had improved lung function, reduced pulmonary shunt, reduced PA-aO2 difference, and increased PaO2 and oxygen index at 30°-RTP compared to that supine position.

14.
Sci Prog ; 104(1): 368504211000907, 2021.
Article in English | MEDLINE | ID: mdl-33720765

ABSTRACT

Valve-controlled asymmetric cylinder is widely used in servo loading system. As a kind of typical electro-hydraulic servo system (EHSS), it inherently has the characteristics such as high order nonlinear, strong coupling, and uncertain, therefore, conventional control strategy is difficult to satisfy the requirements of high-performance control. In this paper, a novel linear active disturbance rejection control (LADRC) method was proposed, in which the internal and external disturbances were actively estimated by the third-order linear extended state observer (LESO) in real-time, and rejected by the control law of proportional integral control (PID) with acceleration feed-forward. The stability of the proposed method was proved, and the influence rules of the LADRC parameters on the control performance were revealed by simulation. Finally, comparative experiments between LADRC and PID control were carried out, results showed that the disturbances can be effectively compensated and the control goals can be successfully achieved with the proposed method.

15.
Article in English | MEDLINE | ID: mdl-29843392

ABSTRACT

In this study, a self-propelled high-energy ultrasonic atomizer was evaluated in terms of deposition on the canopy, the loss to the ground, and fungicide residues in cherry tomato and tomato. Artificial collectors fixed to the upper side and underside of the leaves at different depths and heights were used to collect the depositions. A reliable analytical method for determination of azoxystrobin and tebuconazole in artificial collectors and residue samples was developed by using liquid chromatography triple-quadrupole mass spectrometry. The results showed that the atomizer distributed the droplets evenly throughout the greenhouse with good uniformity (CVs below 39%). The ratio of depositions on the internal and external sides was 66⁻83%, and the ratio of depositions on the underside and upper side was 39⁻50%. There were no significant differences in depositions between two different height crops. The residues of azoxystrobin and tebuconazole in tomato and cherry tomato fruits were far below the maximum residue limits at harvest time. In general, self-propelled high-energy ultrasonic atomizer used in a greenhouse could increase the depositions, especially on the underside and internal side of the canopies, and lead to a reduction of operator exposure risk.


Subject(s)
Crop Production/instrumentation , Fungicides, Industrial/administration & dosage , Nebulizers and Vaporizers , Pesticide Residues/analysis , Pyrimidines/administration & dosage , Solanum lycopersicum/chemistry , Strobilurins/administration & dosage , Triazoles/administration & dosage , Chromatography, Liquid , Crop Production/methods , Fruit/chemistry , Fungicides, Industrial/analysis , Plant Leaves/chemistry , Pyrimidines/analysis , Strobilurins/analysis , Tandem Mass Spectrometry , Triazoles/analysis , Ultrasonics
16.
Pest Manag Sci ; 74(2): 448-455, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28898566

ABSTRACT

BACKGROUND: Plant protection products (PPPs) are applied in China and many other developing countries with knapsack sprayers at high volumes with coarse spray quality, resulting in a high percentage of pesticide losses. In this study, a new air-assisted electric knapsack sprayer and two conventional knapsack sprayers were evaluated in terms of pesticide deposition, residues and loss into the soil. Artificial targets fixed to the upper side and underside of the leaf surface in six zones (at two depths and three heights) were used to collect the deposition, which were analyzed by liquid chromatography triple-quadrupole mass spectrometry. RESULTS: The air-assisted electric knapsack sprayer produced more deposition and better penetrability and uniformity than the two traditional spraying methods. In particular, the air-assisted electric knapsack sprayer reduced pesticide losses to the soil by roughly 37% to 75% and deposited 1.18 and 1.24 times more pesticide than the manual air-pressure and battery-powered knapsack sprayers, respectively. The residues of azoxystrobin and tebuconazole in tomato and cucumber were below the maximum residue limits (MRLs). CONCLUSION: In general, use of the the air-assisted electric knapsack sprayer in tomato and cucumber crops could improve the effectiveness of PPPs, reduce the risk of contamination and protect food safety. © 2017 Society of Chemical Industry.


Subject(s)
Agriculture/methods , Fungicides, Industrial/analysis , Pesticide Residues/analysis , Pyrimidines/analysis , Strobilurins/analysis , Triazoles/analysis , Agriculture/instrumentation , Cucumis sativus/growth & development , Fungicides, Industrial/chemistry , Solanum lycopersicum/growth & development , Pyrimidines/chemistry , Soil/chemistry , Strobilurins/chemistry , Triazoles/chemistry
17.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(6): 1476-80, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21847913

ABSTRACT

The present paper utilizes thermal infrared image for inversion of winter wheat yield and biomass with different technology of irrigation (drip irrigation, sprinkler irrigation, flood irrigation). It is the first time that thermal infrared image is used for predicting the winter wheat yield and biomass. The temperature of crop and background was measured by thermal infrared image. It is necessary to get the crop background separation index (CBSI(L), CBSI(H)), which can be used for distinguishing the crop value from the image. CBSI(L) and CBSI(H) (the temperature when the leaves are wet adequately; the temperature when the stomata of leaf is closed completely) are the threshold values. The temperature of crop ranged from CBSI(L) to CBSI(H). Then the ICWSI was calculated based on relevant theoretical method. The value of stomata leaf has strong negative correlation with ICWSI proving the reliable value of ICWSI. In order to construct the high accuracy simulation model, the samples were divided into two parts. One was used for constructing the simulation model, the other for checking the accuracy of the model. Such result of the model was concluded as: (1) As for the simulation model of soil moisture, the correlation coefficient (R2) is larger than 0.887 6, the average of relative error (Er) ranges from 13.33% to 16.88%; (2) As for the simulation model of winter wheat yield, drip irrigation (0.887 6, 16.89%, -0.12), sprinkler irrigation (0.970 0, 14.85%, - 0.12), flood irrigation (0.969 0, 18.87%, -0.18), with the values of R2, Er and CRM listed in the parentheses followed by the individual term. (3) As for winter wheat biomass, drip irrigation (0.980 0, 13.70%, -0.13), sprinkler irrigation (0.95, 13.15%, -0.14), flood irrigation (0.970 0, 14.48%, -0.13), and the values in the parentheses are demonstrated the same as above. Both the CRM and Er are shown to be very low values, which points to the accuracy and reliability of the model investigated. The accuracy of model is high and reliable. The results indicated that thermal infrared image can be used potentially for inversion of winter wheat yield and biomass.


Subject(s)
Biomass , Models, Theoretical , Triticum , Agricultural Irrigation , Plant Leaves , Reproducibility of Results , Soil , Temperature
18.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(7): 1906-10, 2009 Jul.
Article in Chinese | MEDLINE | ID: mdl-19798969

ABSTRACT

A handheld FieldSpec 3 Spectroradiometer manufactured by ASD Incorporated Company in USA was used to measure the spectroscopic data of canopies of seedling corns, Dchinochloa crasgalli, and Echinochloa crusgalli weeds within the 350-2 500 nm wavelength range in the field. Each canopy was measured five times continuously. The five original spectroscopic data were averaged over the whole wavelength range in order to eliminate random noise. Then the averaged original data were converted into reflectance data, and the unsmooth parts of reflectance spectral curves with large noise were removed. The effective wavelength range for spectral data process was selected as 350-1 300 and 1 400-1 800 nm. Support vector machine (SVM) was chosen as a method of pattern recognition in this paper. SVM has the advantages of solving the problem of small sample size, being able to reach a global optimization, minimization of structure risk, and having higher generalization capability. Two classes of classifier SVM models were built up respectively using "linear", "polynomial", "RBF"(radial basis function), and "mlp (multilayer perception)" kernels. Comparison of different kernel functions for SVM shows that higher precision can be obtained by using "polynomial" kernel function with 3 orders. The accuracy can be above 80%, but the SV ratio is relatively low. On the basis of two-class classification model, taking use of voting procedure, a model based on one-against-one-algorithm multi-class classification SVM was set up. The accuracy reaches 80%. Although the recognition accuracy of the model based on SVM algorithm is not above 90%, the authors still think that the research on weeds recognition using spectrum technology combining SVM method discussed in this paper is tremendously significant. Because the data used in this study were measured over plant canopies outdoor in the field, the measurement is affected by illumination intensity, soil background, atmosphere temperature and instrument accuracy. This method proposes a kind of research ideology and application foundation for weeds recognition in the field.

19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 28(10): 2285-9, 2008 Oct.
Article in Chinese | MEDLINE | ID: mdl-19123390

ABSTRACT

Crops in agriculture and forestry are normally planted discretely. The chemical sprayed between crops would cause great waste and serious environment pollution. Therefore realization of the precision spray has great significance. This research discussed the method to realize automatic target detection using infrared detect technology. The infrared can avoid the interference of the visible light effectively and the response speed is very fast. Therefore it can be used to implement non-tough detection. Photoelectric detection systems based on infrared detect technology are normally stable, reliable, low cost, simple structure, and easy to be practically utilized. Therefore it is widely used in the on-line real time detection field. Its key point is to determinate the characteristic wavelength or wave band. The infrared lights emitted from the infrared light emitting diode were irradiated to the detected objects. The reflected infrared lights could be received by the photoelectric device. Then control signal was triggered and automatic target spray was realized. Code-division infrared detection circuit was used in the system. Modulated pulse infrared signals using different coding were used in different photodetector units in the built system so as to eliminate the light path interference between different detector units and other light signal interferences. Therefore the interference capacity of the system is high. The test results showed that the automatic target spray equipment set up in the study could detect crop targets automatically. The light wavelength used in the test is 850 nm. The detection range was tunable within 0.1-0.5 m. The least targets detectable distance was less than 0.3 m.

SELECTION OF CITATIONS
SEARCH DETAIL