Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Commun ; 11(1): 2575, 2020 May 22.
Article in English | MEDLINE | ID: mdl-32444615

ABSTRACT

As nanoscale photonic devices are densely integrated, multiple near-field optical eigenmodes take part in their functionalization. Inevitably, these eigenmodes are highly multiplexed in their spectra and superposed in their spatial distributions, making it extremely difficult for conventional near-field scanning optical microscopy (NSOM) to address individual eigenmodes. Here, we develop a near-field transmission matrix microscopy for mapping the high-order eigenmodes of nanostructures, which are invisible with conventional NSOM. At an excitation wavelength where multiple modes are superposed, we measure the near-field amplitude and phase maps for various far-field illumination angles, from which we construct a fully phase-referenced far- to near-field transmission matrix. By performing the singular value decomposition, we extract orthogonal near-field eigenmodes such as anti-symmetric mode and quadruple mode of multiple nano-slits whose gap size (50 nm) is smaller than the probe aperture (150 nm). Analytic model and numerical mode analysis validated the experimentally observed modes.

2.
Nat Commun ; 10(1): 3152, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31316065

ABSTRACT

Label-free in vivo imaging is crucial for elucidating the underlying mechanisms of many important biological systems in their most native states. However, the applicability of existing modalities has been limited to either superficial layers or early developmental stages due to tissue turbidity. Here, we report a synchronous angular scanning microscope for the rapid interferometric recording of the time-gated reflection matrix, which is a unique matrix characterizing full light-specimen interaction. By applying single scattering accumulation algorithm to the recorded matrix, we removed both high-order sample-induced aberrations and multiple scattering noise with the effective aberration correction speed of 10,000 modes/s. We demonstrated in vivo imaging of whole neural network throughout the hindbrain of the larval zebrafish at a matured stage where physical dissection used to be required for conventional imaging. Our method will expand the scope of applications for optical imaging, where fully non-invasive interrogation of living specimens is critical.


Subject(s)
Neuroimaging/methods , Zebrafish/anatomy & histology , Algorithms , Animals , Brain/anatomy & histology
3.
Sci Rep ; 8(1): 12815, 2018 08 24.
Article in English | MEDLINE | ID: mdl-30143733

ABSTRACT

Tissue-clearing techniques have received great attention for volume imaging and for the potential to be applied in optical diagnosis. In principle, tissue clearing is achieved by reducing light scattering through a combination of lipid removal, size change, and matching of the refractive index (RI) between the imaging solution and the tissue. However, the contributions of these major factors in tissue clearing have not been systematically evaluated yet. In this study, we experimentally measured and mathematically calculated the contribution of these factors to the clearing of four organs (brain, liver, kidney, and lung). We found that these factors differentially influence the maximal clearing efficacy of tissues and the diffusivity of materials inside the tissue. We propose that these physical properties of organs can be utilized for the quality control (Q/C) process during tissue clearing, as well as for the monitoring of the pathological changes of tissues.


Subject(s)
Optical Imaging/methods , Animals , Collagen Type IV/metabolism , Diffusion , Extracellular Matrix/metabolism , Lipids/isolation & purification , Mice, Inbred C57BL , Refractometry
4.
Sci Rep ; 8(1): 9165, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29907794

ABSTRACT

High-resolution optical imaging within thick objects has been a challenging task due to the short working distance of conventional high numerical aperture (NA) objective lenses. Lenses with a large physical diameter and thus a large aperture, such as microscope condenser lenses, can feature both a large NA and a long working distance. However, such lenses suffer from strong aberrations. To overcome this problem, we present a method to correct the aberrations of a transmission-mode imaging system that is composed of two condensers. The proposed method separately identifies and corrects aberrations of illumination and collection lenses of up to 1.2 NA by iteratively optimizing the total intensity of the synthetic aperture images in the forward and phase-conjugation processes. At a source wavelength of 785 nm, we demonstrated a spatial resolution of 372 nm at extremely long working distances of up to 1.6 mm, an order of magnitude improvement in comparison to conventional objective lenses. Our method of converting microscope condensers to high-quality objectives may facilitate increases in the imaging depths of super-resolution and expansion microscopes.

5.
Nat Commun ; 8(1): 2157, 2017 12 18.
Article in English | MEDLINE | ID: mdl-29255208

ABSTRACT

Thick biological tissues give rise to not only the multiple scattering of incoming light waves, but also the aberrations of remaining signal waves. The challenge for existing optical microscopy methods to overcome both problems simultaneously has limited sub-micron spatial resolution imaging to shallow depths. Here we present an optical coherence imaging method that can identify aberrations of waves incident to and reflected from the samples separately, and eliminate such aberrations even in the presence of multiple light scattering. The proposed method records the time-gated complex-field maps of backscattered waves over various illumination channels, and performs a closed-loop optimization of signal waves for both forward and phase-conjugation processes. We demonstrated the enhancement of the Strehl ratio by more than 500 times, an order of magnitude or more improvement over conventional adaptive optics, and achieved a spatial resolution of 600 nm up to an imaging depth of seven scattering mean free paths.

6.
Nano Lett ; 17(12): 7731-7736, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29148810

ABSTRACT

We report the enhancement of light absorption in Si nanowire photovoltaic devices with one-dimensional dielectric or metallic gratings that are fabricated by a damage-free, precisely aligning, polymer-assisted transfer method. Incorporation of a Si3N4 grating with a Si nanowire effectively enhances the photocurrents for transverse-electric polarized light. The wavelength at which a maximum photocurrent is generated is readily tuned by adjusting the grating pitch. Moreover, the electrical properties of the nanowire devices are preserved before and after transferring the Si3N4 gratings onto Si nanowires, ensuring that the quality of pristine nanowires is not degraded during the transfer. Furthermore, we demonstrate Si nanowire photovoltaic devices with Ag gratings using the same transfer method. Measurements on the fabricated devices reveal approximately 27.1% enhancement in light absorption compared to that of the same devices without the Ag gratings without any degradation of electrical properties. We believe that our polymer-assisted transfer method is not limited to the fabrication of grating-incorporated nanowire photovoltaic devices but can also be generically applied for the implementation of complex nanoscale structures toward the development of multifunctional optoelectronic devices.

7.
ACS Appl Mater Interfaces ; 7(27): 15031-41, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26097997

ABSTRACT

The effect of varying degrees of surface and vertical coverage of gold nanoparticles (Au-NPs) by poly(styrenesulfonate)-doped poly(3,4-ethylenedioxythiophene) ( PEDOT: PSS), which was used as a capping layer between indium tin oxide (ITO) and a hole transport layer (HTL) on small-molecule fluorescent organic light-emitting diodes (OLEDs), was systemically investigated. With respect to the Au-NP loading amount and size, the resultant current densities influenced the charge balance and, therefore, the OLED device performance. When the capping layer consisted of ITO/Au-NPs/ PEDOT: PSS+Au-NPs, superior device performance was obtained with 10-nm Au-NPs through increased surface coverage in comparison to other Au-NP PEDOT:PSS coverage conditions. Furthermore, the Au-NP size determined the vertical coverage of the capping layer. The current densities of OLEDs containing small Au-NPs (less than 30 nm, small vertical coverage) covered by PEDOT: PSS decreased because of the suppression of the hole carriers by the Au-NP trapping sites. However, the current densities of the devices with large Au-NPs (over 30 nm, large vertical coverage) increased. The increased electromagnetic fields observed around relatively large Au-NPs under electrical bias were attributed to increased current densities in the OLEDs, as confirmed by the finite-difference time-domain simulation. These results show that the coverage conditions of the Au-NPs by the PEDOT: PSS clearly influenced the OLED current density and efficiency.

8.
Nano Lett ; 15(1): 753-8, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25546325

ABSTRACT

Semiconductor nanowires (NWs) often exhibit efficient, broadband light absorption despite their relatively small size. This characteristic originates from the subwavelength dimensions and high refractive indices of the NWs, which cause a light-trapping optical antenna effect. As a result, NWs could enable high-efficiency but low-cost solar cells using small volumes of expensive semiconductor material. Nevertheless, the extent to which the antenna effect can be leveraged in devices will largely determine the economic viability of NW-based solar cells. Here, we demonstrate a simple, low-cost, and scalable route to dramatically enhance the optical antenna effect in NW photovoltaic devices by coating the wires with conformal dielectric shells. Scattering and absorption measurements on Si NWs coated with shells of SiN(x) or SiO(x) exhibit a broadband enhancement of light absorption by ∼ 50-200% and light scattering by ∼ 200-1000%. The increased light-matter interaction leads to a ∼ 80% increase in short-circuit current density in Si photovoltaic devices under 1 sun illumination. Optical simulations reproduce the experimental results and indicate the dielectric-shell effect to be a general phenomenon for groups IV, II-VI, and III-V semiconductor NWs in both lateral and vertical orientations, providing a simple route to approximately double the efficiency of NW-based solar cells.

9.
Opt Express ; 22 Suppl 3: A992-A1000, 2014 May 05.
Article in English | MEDLINE | ID: mdl-24922405

ABSTRACT

We studied optical resonances in laterally oriented Si nanowire arrays by conducting finite-difference time-domain simulations. Localized Fabry-Perot and whispering-gallery modes are supported within the cross section of each nanowire in the array and result in broadband light absorption. Comparison of a nanowire array with a single nanowire shows that the current density (J(SC)) is preserved for a range of nanowire morphologies. The J(SC) of a nanowire array depends on the spacing of its constituent nanowires, which indicates that both diffraction and optical antenna effects contribute to light absorption. Furthermore, a vertically stacked nanowire array exhibits significantly enhanced light absorption because of the emergence of coupled cavity-waveguide modes and the mitigation of a screening effect. With the assumption of unity internal quantum efficiency, the J(SC) of an 800-nm-thick cross-stacked nanowire array is 14.0 mA/cm², which yields a ~60% enhancement compared with an equivalent bulk film absorber. These numerical results underpin a rational design strategy for ultrathin solar absorbers based on assembled nanowire cavities.

10.
ACS Nano ; 8(4): 3707-14, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24617563

ABSTRACT

Recent investigations of semiconductor nanowires have provided strong evidence for enhanced light absorption, which has been attributed to nanowire structures functioning as optical cavities. Precise synthetic control of nanowire parameters including chemical composition and morphology has also led to dramatic modulation of absorption properties. Here we report finite-difference time-domain (FDTD) simulations for silicon (Si) nanowire cavities to elucidate the key factors that determine enhanced light absorption. The FDTD simulations revealed that a crystalline Si nanowire with an embedded 20-nm-thick amorphous Si shell yields 40% enhancement of absorption as compared to a homogeneous crystalline Si nanowire, under air-mass 1.5 global solar spectrum for wavelengths between 280 and 1000 nm. Such a large enhancement in absorption results from localization of several resonant modes within the amorphous Si shell. A nanowire with a rectangular cross section exhibited enhanced absorption at specific wavelengths with respect to a hexagonal nanowire. The pronounced absorption peaks were assigned to resonant modes with a high symmetry that red-shifted with increasing size of the rectangular nanowire. We extended our studies to investigate the optical properties of single- and multilayer arrays of these horizontally oriented nanowire building blocks. The absorption efficiency of a nanowire stack increases with the number of nanowire layers and was found to be greater than that of a bulk structure or even a single nanowire of equivalent thickness. Lastly, we found that a single-layer nanowire array preserves the structured absorption spectrum of a single nanowire and ascribed this result to a diffraction effect of the periodic nanowire array. The results from these provide insight into the design of nanowire optical cavities with tunable and enhanced light absorption and thus, could help enable the development of ultrathin solar cells and other nanoscale optoelectronic devices.

11.
Nanoscale ; 5(17): 7838-43, 2013 Sep 07.
Article in English | MEDLINE | ID: mdl-23852259

ABSTRACT

A low-cost nanopatterned highly conductive poly(3,4-ethylenedioxythiophene) (PEDOT) thin film was fabricated on a flexible plastic substrate via a chemical polymerization method combined with a nanoimprinting technique and used as a platinum (Pt), TCO-free counter electrode for dye-sensitized solar cells (DSSCs). The catalytic properties of the nanopatterned PEDOT as the counter electrode in DSSCs were studied using cyclic voltammetry, J-V measurements, impedance spectroscopy, and finite-difference time-domain (FDTD) simulations. The nanopatterned PEDOT counter electrodes exhibit better functionality as a counter electrode for tri-iodide reduction when compared to non-patterned PEDOT-based counter electrodes. The Pt and TCO-free DSSCs with a nanopatterned PEDOT-based counter electrode exhibited a power conversion efficiency of 7.1% under one sunlight illumination (100 mW cm(-2)), which is comparable to that of conventional DSSCs with standard platinum Pt/FTO paired counter electrodes. The ability to modulate catalytic functionality with changes in nanoscale morphology represents a promising route for developing new counter electrodes of Pt and TCO-free DSSCs.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemistry , Coloring Agents/chemistry , Platinum/chemistry , Polymers/chemistry , Solar Energy , Electric Power Supplies , Electrodes
12.
Opt Express ; 20 Suppl 6: A997-1004, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23187677

ABSTRACT

We investigated light absorption in various Si thin film solar absorbers and designed efficient input couplers using finite-difference time-domain simulation. In the simulation, a dielectric coating on Si thin film led to enhanced light absorption at near-ultraviolet to blue wavelengths, while the absorption peaks at longer wavelengths were nearly preserved. In a 300-nm-thick Si film with a 60-nm-thick Si(3)N(4) top-coated layer, current density was augmented by ~35% compared to a bare Si film. For broadband absorption, we introduced two-dimensional square-lattice periodic patterns consisting of low-index dielectric materials, SiO(2) or Si(3)N(4), or high-index material, Si. The periodic pattern exhibited tunable and pronounced absorption peaks that are identified as horizontally-propagating waveguide modes. The high absorption peaks were significantly amplified with increasing refractive index of the dielectric pattern. For a Si-patterned structure with a pitch size of 400 nm and a pattern depth of 80 nm, current density was achieved up to 17.0 mA/cm(2), which is enhanced by a factor of 2.1 compared to the current density of bare Si film. Deep understanding of the light absorption in optical cavities with wavelength-scale thickness will be useful in the design of efficient thin film solar absorbers as well as novel nanophotonic elements.

13.
Nano Lett ; 12(9): 4971-6, 2012 Sep 12.
Article in English | MEDLINE | ID: mdl-22889329

ABSTRACT

Subwavelength diameter semiconductor nanowires can support optical resonances with anomalously large absorption cross sections, and thus tailoring these resonances to specific frequencies could enable a number of nanophotonic applications. Here, we report the design and synthesis of core/shell p-type/intrinsic/n-type (p/i/n) Si nanowires (NWs) with different sizes and cross-sectional morphologies as well as measurement and simulation of photocurrent spectra from single-NW devices fabricated from these NW building blocks. Approximately hexagonal cross-section p/i/n coaxial NWs of various diameters (170-380 nm) were controllably synthesized by changing the Au catalyst diameter, which determines core diameter, as well as shell deposition time, which determines shell thickness. Measured polarization-resolved photocurrent spectra exhibit well-defined diameter-dependent peaks. The corresponding external quantum efficiency (EQE) spectra calculated from these data show good quantitative agreement with finite-difference time-domain (FDTD) simulations and allow assignment of the observed peaks to Fabry-Perot, whispering-gallery, and complex high-order resonant absorption modes. This comparison revealed a systematic red-shift of equivalent modes as a function of increasing NW diameter and a progressive increase in the number of resonances. In addition, tuning shell synthetic conditions to enable enhanced growth on select facets yielded NWs with approximately rectangular cross sections; analysis of transmission electron microscopy and scanning electron microscopy images demonstrate that growth of the n-type shell at 860 °C in the presence of phosphine leads to enhanced relative Si growth rates on the four {113} facets. Notably, polarization-resolved photocurrent spectra demonstrate that at longer wavelengths the rectangular cross-section NWs have narrow and significantly larger amplitude peaks with respect to similar size hexagonal NWs. A rectangular NW with a diameter of 260 nm yields a dominant mode centered at 570 nm with near-unity EQE in the transverse-electric polarized spectrum. Quantitative comparisons with FDTD simulations demonstrate that these new peaks arise from cavity modes with high symmetry that conform to the cross-sectional morphology of the rectangular NW, resulting in low optical loss of the mode. The ability to modulate absorption with changes in nanoscale morphology by controlled synthesis represents a promising route for developing new photovoltaic and optoelectronic devices.


Subject(s)
Electric Power Supplies , Nanostructures/chemistry , Nanostructures/ultrastructure , Semiconductors , Silicon/chemistry , Solar Energy , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Light , Particle Size , Porosity , Scattering, Radiation
14.
Opt Express ; 20(23): A997-1004, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23326848

ABSTRACT

We investigated light absorption in various Si thin film solar absorbers and designed efficient input couplers using finite-difference time-domain simulation. In the simulation, a dielectric coating on Si thin film led to enhanced light absorption at near-ultraviolet to blue wavelengths, while the absorption peaks at longer wavelengths were nearly preserved. In a 300-nm-thick Si film with a 60-nm-thick Si(3)N(4) top-coated layer, current density was augmented by ~35% compared to a bare Si film. For broadband absorption, we introduced two-dimensional square-lattice periodic patterns consisting of low-index dielectric materials, SiO(2) or Si(3)N(4), or high-index material, Si. The periodic pattern exhibited tunable and pronounced absorption peaks that are indentified as horizontally-propagating waveguide modes. The high absorption peaks were significantly amplified with increasing refractive index of the dielectric pattern. For a Si-patterned structure with a pitch size of 400 nm and a pattern depth of 80 nm, current density was achieved up to 17.0 mA/cm(2), which is enhanced by a factor of 2.1 compared to the current density of bare Si film. Deep understanding of the light absorption in optical cavities with wavelength-scale thickness will be useful in the design of efficient thin film solar absorbers as well as novel nanophotonic elements.

SELECTION OF CITATIONS
SEARCH DETAIL
...