Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 13(2): e2302264, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37812564

ABSTRACT

Multi-modal combination therapy for tumor is expected to have superior therapeutic effect compared with monotherapy. In this study, a super-small bismuth/copper-gallic acid coordination polymer nanoparticle (BCN) protected by polyvinylpyrrolidone is designed, which is co-encapsulated with glucose oxidase (GOX) by phospholipid to obtain nanoprobe BCGN@L. It shows that BCN has an average size of 1.8 ± 0.7 nm, and photothermal conversion of BCGN@L is 31.35% for photothermal imaging and photothermal therapy (PTT). During the treatment process of 4T1 tumor-bearing nude mice, GOX catalyzes glucose in the tumor to generate gluconic acid and hydrogen peroxide (H2 O2 ), which reacts with copper ions (Cu2+ ) to produce toxic hydroxyl radicals (•OH) for chemodynamic therapy (CDT) and new fresh oxygen (O2 ) to supply to GOX for further catalysis, preventing tumor hypoxia. These reactions increase glucose depletion for starvation therapy , decrease heat shock protein expression, and enhance tumor sensitivity to low-temperature PTT. The in vitro and in vivo results demonstrate that the combination of CDT with other treatments produces excellent tumor growth inhibition. Blood biochemistry and histology analysis suggests that the nanoprobe has negligible toxicity. All the positive results reveal that the nanoprobe can be a promising approach for incorporation into multi-modal anticancer therapy.


Subject(s)
Nanoparticles , Neoplasms , Animals , Mice , Copper , Polymers , Glucose Oxidase , Mice, Nude , Neoplasms/drug therapy , Glucose , Hydrogen Peroxide , Cell Line, Tumor , Tumor Microenvironment
2.
Analyst ; 147(9): 1952-1960, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35403630

ABSTRACT

Taking the hepatic sinusoid (HS) as the main delivery area of liver nutrients and metabolic waste, recognizing its structure is important for a deep understanding of liver function. In this paper, based on lycopersicon esculentum lectin (LEL), with targeting ability for endothelial cells, and carbon quantum dots (CQDs), with high biosafety, an LEL-coupled CQD immunofluorescence probe (CQD@LEL) that can label microvessels is designed and used for the fluorescence labeling and imaging of HS in liver tissue sections. The CQD size is approximately 2 nm. Blue fluorescence is emitted under excitation; its optimal excitation wavelength is 400 nm while the emission is at about 450 nm. Gel electrophoresis and capillary electrophoresis confirm that glutaraldehyde can couple LEL to CQD, and the obtained CQD@LEL retains the fluorescence property and has good stability. Optimization experiments show that its labeling effect is positively correlated with time and probe concentration for dyeing the blood vessels of mouse liver slices. In order to improve the effect further, a probe concentration of 0.17 mg mL-1 and incubation time of 3 h were chosen to label the liver tissue sections. The results show that the liver microvessels are formed by interstitial structures among the hepatic cords, and the HS presents a granular or patchy appearance. H&E and ultrathin section TEM show that the microvascular wall of the liver is composed of discontinuous endothelial cells, and there are Kupffer cells and other cells in the tubes, proving that our probe can clearly label the structure and morphology of liver microvessels. This work is of great significance for the visualization of HS.


Subject(s)
Quantum Dots , Animals , Capillaries , Carbon/chemistry , Coloring Agents , Endothelial Cells , Lectins , Liver , Mice , Quantum Dots/chemistry
3.
Anal Chim Acta ; 1117: 35-40, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32408952

ABSTRACT

Over the decades, nanochannels have been widely used for single molecule detection, smart sensors, and energy transfer and storage based on its unique ion transport properties. Although various ion transport phenomena of nanochannels have been reported, the discovery of new ion transport phenomena is still of great significance for understanding material transport of nanochannels and development of nanodevices with unique working capabilities. This article reports a novel nanochannel ion transport phenomenon - ion current rectification in combination with ion current saturation (ICR-S), which arised from a mesoporous titania conical microplug generated in situ in the glass micropipette tip cavity by space confinement evaporation. The ion current of forward voltage is greater than that of reverse voltage, and the saturation currents appear in both the forward and reverse voltages, the ratio of forward and reverse saturation current can reaches to 10. In addition, the influence of pH, ionic strength, and micropipette angle on ICR-S is also investigated.

4.
Anal Chem ; 91(24): 15377-15381, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31744292

ABSTRACT

In this work, in situ growth of a titanium dioxide microplug (TDMP) having mesoporous channels at the tip of a glass micropipette induced by space-confined evaporation is reported. Moreover, clear ion current rectification (ICR) of a single-material nanopore in a saturated potassium chloride solution is observed for the first time. TDMP presents an asymmetrical channel structure with the top and bottom apertures of 12.3 ± 6.1 and 42.6 ± 19.7 nm, respectively. TDMP exhibits outstanding ICR capability as the ions get transported through it due to the applied potential. The values for the rectification coefficient (r = log2|I+1 V/I-1 V|) in a saturated KCl solution under acidic (pH of 3.0) and alkaline (pH of 10.0) environments are 1.32 and -0.84, respectively. The intensity and direction of ICR can be adjusted by pH or through the modification of citric acid. Meanwhile, the length and ion transport behavior of TDMP under different growth conditions (time and diameter) were also investigated. TDMP with asymmetric mesoporous channels, maintaining ICR in a saturated salt solution, is expected to expand the application of nanopores in high-salt environments. Furthermore, growth of mesoporous material in the micropipette facilitates the miniaturization of the nanopore device, which further promotes its application potential.

5.
Polymers (Basel) ; 10(8)2018 Aug 07.
Article in English | MEDLINE | ID: mdl-30960807

ABSTRACT

As one of the most interesting naturally-occurring geometries, micro-helical structures have attracted attention due to their potential applications in fabricating biomedical and microelectronic devices. Conventional processing techniques for manufacturing micro-helices are likely to be limited in cost and mass-productivity, while Spirulina, which shows natural fine micro-helical forms, can be easily mass-reproduced at an extremely low cost. Furthermore, considering the extensive utility of conducting polymers, it is intriguing to synthesize conducting polymer micro-helices. In this study, PPy (polypyrrole), PANI (polyaniline), and PEDOT (poly(3,4-ethylenedioxythiophene)) micro-helices were fabricated using Spirulinaplatensis as a bio-template. The successful formations of the conducting polymer micro-helix were confirmed using scanning electron microscopy (SEM). Fourier transform infrared spectroscopy (FTIR) and Raman and X-ray diffraction (XRD) were employed to characterize the molecular structures of the conducting polymer in micro-helical forms. In the electrochemical characterization, the optimized specific capacitances for the PPy micro-helix, the PANI micro-helix, and the PEDOT micro-helix were found to be 234 F/g, 238 F/g at the scan rate of 5 mV/s, and 106.4 F/g at the scan rate of 10 mV/s, respectively. Therefore, it could be expected that other conducting polymer micro-helices with Spirulina as a bio-template could be also easily synthesized for various applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...