Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(7): 2408-2414, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38329291

ABSTRACT

Two-dimensional (2D) heterostructures with ferromagnetism and ferroelectricity provide a promising avenue to miniaturize the device size, increase computational power, and reduce energy consumption. However, the direct synthesis of such eye-catching heterostructures has yet to be realized up to now. Here, we design a two-step chemical vapor deposition strategy to growth of Cr2S3/WS2 vertical heterostructures with atomically sharp and clean interfaces on sapphire. The interlayer charge transfer and periodic moiré superlattice result in the emergence of room-temperature ferroelectricity in atomically thin Cr2S3/WS2 vertical heterostructures. In parallel, long-range ferromagnetic order is discovered in 2D Cr2S3 via the magneto-optical Kerr effect technique with the Curie temperature approaching 170 K. The charge distribution variation induced by the moiré superlattice changes the ferromagnetic coupling strength and enhances the Curie temperature. The coexistence of ferroelectricity and ferromagnetism in 2D Cr2S3/WS2 vertical heterostructures provides a cornerstone for the further design of logic-in-memory devices to build new computing architectures.

2.
Nat Commun ; 15(1): 721, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267426

ABSTRACT

Multiferroic materials offer a promising avenue for manipulating digital information by leveraging the cross-coupling between ferroelectric and ferromagnetic orders. Despite the ferroelectricity has been uncovered by ion displacement or interlayer-sliding, one-unit-cell of multiferroic materials design and wafer-scale synthesis have yet to be realized. Here we develope an interface modulated strategy to grow 1-inch one-unit-cell of non-layered chromium sulfide with unidirectional orientation on industry-compatible c-plane sapphire. The interfacial interaction between chromium sulfide and substrate induces the intralayer-sliding of self-intercalated chromium atoms and breaks the space reversal symmetry. As a result, robust room-temperature ferroelectricity (retaining more than one month) emerges in one-unit-cell of chromium sulfide with ultrahigh remanent polarization. Besides, long-range ferromagnetic order is discovered with the Curie temperature approaching 200 K, almost two times higher than that of bulk counterpart. In parallel, the magnetoelectric coupling is certified and which makes 1-inch one-unit-cell of chromium sulfide the largest and thinnest multiferroics.

3.
J Phys Chem Lett ; 14(50): 11286-11291, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38063416

ABSTRACT

Thermal stimulus has been considered as a promising strategy for controlling on-surface reactions, allowing the formation of diverse products on metal substrates. Here, we successfully achieve hierarchical dehydrogenation reactions of amino groups on a Cu(100) surface. By carefully adjusting the experimental parameters, we synthesize large-scale and low-defect density surface metal-organic frameworks on copper surfaces. Our work sheds light on a controllable route for the synthesis of high-quality metal-organic coordination supramolecular structures via on-surface chemistry.

4.
Adv Mater ; 35(36): e2211690, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37276613

ABSTRACT

2D transition metal dichalcogenides (TMDCs) and single-atom catalysts (SACs) are promising electrodes for energy conversion/storage because of the layered structure and maximum atom utilization efficiency. However, the integration of such two type materials and the relevant sodium storage applications remain daunting challenges. Here, an ingenious diatomite-templated synthetic strategy is designed to fabricate single-atom cobalt-doped MoS2 /carbon (SA Co-MoS2 /C) composites toward the high-performance sodium storage. Benefiting from the unique hierarchical structure, high electron/sodium-ion conductivity, and abundant active sites, the obtained SA Co-MoS2 /C reveals remarkable specific capacity (≈604.0 mAh g-1 at 0.1 A g-1 ), high rate performance, and outstanding long cyclic stability. Particularly, the sodium-ion full cell composed of SA Co-MoS2 /C anode and Na3 V2 (PO4 )3 cathode demonstrates unexpected stability with the cycle number exceeded 1200. The internal sodium storage mechanism is clarified with the aid of density functional theory calculations and in situ experimental characterizations. This work not only represents a substantial leap in terms of synthesizing SACs on 2D TMDCs but also provides a crucial step toward the practical sodium-ion battery applications.

5.
Small ; 19(38): e2302029, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37194986

ABSTRACT

Sodium-ion batteries (SIBs) have received increasing attention because of their appealing cell voltages and cost-effective features. However, the atom aggregation and electrode volume variation inevitably deteriorate the sodium storage kinetics. Here a new strategy is proposed to boost the lifetime of SIB by synthesizing sea urchin-like FeSe2 /nitrogen-doped carbon (FeSe2 /NC) composites. The robust FeN coordination hinders the Fe atom aggregation and accommodates the volume expansion, while the unique biomorphic morphology and high conductivity of FeSe2 /NC enhance the intercalation/deintercalation kinetics and shorten the ion/electron diffusion length. As expected, FeSe2 /NC electrodes deliver excellent half (387.6 mAh g-1 at 20.0 A g-1 after 56 000 cycles) and full (203.5 mAh g-1 at 1.0 A g-1 after 1200 cycles) cell performances. Impressively, an ultralong lifetime of SIB composed of FeSe2 /Fe3 Se4 /NC anode is uncovered with the cycle number exceeding 65 000. The sodium storage mechanism is clarified with the aid of density function theory calculations and in situ characterizations. This work hereby provides a new paradigm for enhancing the lifetime of SIB by constructing a unique coordination environment between active material and framework.

6.
Adv Mater ; 35(23): e2211536, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36929175

ABSTRACT

Epitaxial growth and controllable doping of wafer-scale atomically thin semiconductor single crystals are two central tasks to tackle the scaling challenge of transistors. Despite considerable efforts are devoted, addressing such crucial issues simultaneously under 2D confinement is yet to be realized. Here, an ingenious strategy to synthesize record-breaking 4 in. length Fe-doped transition-metal dichalcogenides (TMDCs) single crystals on industry-compatible c-plane sapphire without special miscut angle is designed. Atomically thin transistors with high electron mobility (≈146 cm2 V-1 s-1 ) and remarkable on/off current ratio (≈109 ) are fabricated based on 4 in. length Fe-MoS2 single crystals, due to the ultralow contact resistance (≈489 Ω µm). In-depth characterizations and theoretical calculations reveal that the introduction of Fe significantly decreases the formation energy of parallel steps on sapphire surfaces and contributes to the edge-nucleation of unidirectional alignment TMDCs domains (>99%). This work represents a substantial leap in terms of bridging synthesis and doping of wafer-scale 2D semiconductor single crystals, which should promote the further device downscaling and extension of Moore's law.

7.
Nano Lett ; 23(5): 1758-1766, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36790274

ABSTRACT

Two-dimensional (2D) nanosheet arrays with unidirectional orientations are of great significance for synthesizing wafer-scale single crystals. Although great efforts have been devoted, the growth of atomically thin magnetic nanosheet arrays and single crystals is still unaddressed. Here we design an interisland-distance-mediated chemical vapor deposition strategy to synthesize centimeter-scale atomically thin Fe3O4 arrays with unidirectional orientations on mica. The unidirectional alignment of nearly all the Fe3O4 nanosheets is driven by a dual-coupling-guided growth mechanism. The Fe3O4/mica interlayer interaction induces two preferred antiparallel orientations, whereas the interisland interaction of Fe3O4 breaks the energy degeneracy of antiparallel orientations. The room-temperature long-range ferrimagnetic order and thickness-tunable magnetic domain evolution are uncovered in atomically thin Fe3O4. This strategy to tune the orientations of nanosheets through the an interisland interaction can guide the synthesis of other 2D transition-metal oxides, thereby laying a solid foundation for future spintronic device applications at the integration level.

8.
Adv Mater ; 35(7): e2209465, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36460029

ABSTRACT

2D multiferroics with magnetoelectric coupling combine the magnetic order and electric polarization in a single phase, providing a cornerstone for constructing high-density information storages and low-energy-consumption spintronic devices. The strong interactions between various order parameters are crucial for realizing such multifunctional applications, nevertheless, this criterion is rarely met in classical 2D materials at room-temperature. Here an ingenious space-confined chemical vapor deposition strategy is designed to synthesize atomically thin non-layered ε-Fe2 O3 single crystals and disclose the room-temperature long-range ferrimagnetic order. Interestingly, the strong ferroelectricity and its switching behavior are unambiguously discovered in atomically thin ε-Fe2 O3 , accompanied with an anomalous thickness-dependent coercive voltage. More significantly, the robust room-temperature magnetoelectric coupling is uncovered by controlling the magnetism with electric field and verifies the multiferroic feature of atomically thin ε-Fe2 O3 . This work not only represents a substantial leap in terms of the controllable synthesis of 2D multiferroics with robust magnetoelectric coupling, but also provides a crucial step toward the practical applications in low-energy-consumption electric-writing/magnetic-reading devices.

9.
Adv Sci (Weinh) ; 10(2): e2204671, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36398606

ABSTRACT

Tin selenide (SnSe2 ) is considered a promising anode of the lithium-ion battery because of its tunable interlayer space, abundant active sites, and high theoretical capacity. However, the low electronic conductivity and large volume variation during the charging/discharging processes inevitably result in inadequate specific capacity and inferior cyclic stability. Herein, a high-throughput wet chemical method to synthesize SnSe2 /SnSe heterostructures is designed and used as anodes of lithium-ion batteries. The hierarchical nanoflower morphology of such heterostructures buffers the volume expansion, while the built-in electric field and metallic feature increase the charge transport capability. As expected, the superb specific capacity (≈911.4 mAh g-1 at 0.1 A g-1 ), high-rate performance, and outstanding cyclic stability are obtained in the lithium-ion batteries composed of SnSe2 /SnSe anodes. More intriguingly, a reversible specific capacity (≈374.7 mAh g-1 at 2.5 A g-1 ) is maintained after 1000 cycles. The internal lithium storage mechanism is clarified by density functional theory (DFT) calculations and in situ characterizations. This work hereby provides a new paradigm for enhancing lithium-ion battery performances by constructing heterostructures.

10.
Nat Commun ; 13(1): 6130, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36253483

ABSTRACT

Two-dimensional multiferroic materials have garnered broad interests attributed to their magnetoelectric properties and multifunctional applications. Multiferroic heterostructures have been realized, nevertheless, the direct coupling between ferroelectric and ferromagnetic order in a single material still remains challenging, especially for two-dimensional materials. Here, we develop a physical vapor deposition approach to synthesize two-dimensional p-doped SnSe. The local phase segregation of SnSe2 microdomains and accompanying interfacial charge transfer results in the emergence of degenerate semiconductor and metallic feature in SnSe. Intriguingly, the room-temperature ferrimagnetism has been demonstrated in two-dimensional p-doped SnSe with the Curie temperature approaching to ~337 K. Meanwhile, the ferroelectricity is maintained even under the depolarizing field introduced by SnSe2. The coexistence of ferrimagnetism and ferroelectricity in two-dimensional p-doped SnSe verifies its multiferroic feature. This work presents a significant advance for exploring the magnetoelectric coupling in two-dimensional limit and constructing high-performance logic devices to extend Moore's law.

11.
J Phys Chem Lett ; 13(38): 8902-8907, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36126251

ABSTRACT

Self-assembly of identical organometallic supramolecules into ordered superstructures is of great interest in both chemical science and nanotechnology due to its potential to generate neoteric properties through collective effects. In this work, we demonstrate that large-scale self-organization of atomically precise organometallic supramolecules can be achieved through cascaded on-surface chemical reactions, by the combination of intra- and inter-supramolecular interactions. Supramolecules with defined size and shape are first built through intramolecular reaction and intermolecular metal coordination, followed by the formation of well-ordered two-dimensional arrays with the assistance of Br atoms by -C-H···Br interactions. The mechanism of this process has been investigated from the perspectives of thermodynamics and kinetics.

12.
Adv Mater ; 34(18): e2200885, 2022 May.
Article in English | MEDLINE | ID: mdl-35257429

ABSTRACT

2D semiconductors are emerging as plausible candidates for next-generation "More-than-Moore" nanoelectronics to tackle the scaling challenge of transistors. Wafer-scale 2D semiconductors, such as MoS2 and WS2 , have been successfully synthesized recently; nevertheless, the absence of effective doping technology fundamentally results in energy barriers and high contact resistances at the metal-semiconductor interfaces, and thus restrict their practical applications. Herein, a controllable doping strategy in centimeter-sized monolayer MoS2 films is developed to address this critical issue and boost the device performance. The ultralow contact resistance and perfect Ohmic contact with metal electrodes are uncovered in monolayer Fe-doped MoS2 , which deliver excellent device performance featured with ultrahigh electron mobility and outstanding on/off current ratio. Impurity scattering is suppressed significantly thanks to the ultralow electron effective mass and appropriate doping site. Particularly, unidirectionally aligned monolayer Fe-doped MoS2 domains are prepared on 2 in. commercial c-plane sapphire, suggesting the feasibility of synthesizing wafer-scale 2D single-crystal semiconductors with outstanding device performance. This work presents the potential of high-performance monolayer transistors and enables further device downscaling and extension of Moore's law.

13.
J Phys Chem Lett ; 12(34): 8151-8156, 2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34410130

ABSTRACT

Two-dimensional (2D) tessellation of organic species acquired increased interests recently because of their potential applications in physics, biology, and chemistry. 2D tessellations have been successfully constructed on surfaces via various intermolecular interactions. However, the transformation between 2D tessellation lattices has been rarely reported. Herein, we successfully fabricated two types of Kagome lattices on Cu(111). The former phase exhibits (3,6,3,6) Kagome lattices, which are stabilized via the intermolecular hydrogen bond interactions. The latter phase is formed through direct chemical transferring from the former one maintaining almost the same Kagome lattices, except for that the unit cell rotates for 4°. Detailed scanning tunneling microscopy and density functional calculation studies reveal that the chemical transformation is achieved by the formation of the N-Cu-N metal-organic bonds via dehydrogenation reactions of the amines.

14.
J Phys Chem Lett ; 12(7): 1869-1875, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33586446

ABSTRACT

In on-surface chemistry, the efficient preparation of metal-organic hybrids is regarded as a primary path to mediate controlled synthesis of well-ordered low-dimensional organic nanostructures. The fundamental mechanisms in forming these hybrid structures, however, are so far insufficiently explored. Here, with scanning tunneling microscopy, we studied the bonding behavior of the adsorbed phenol derivatives with different molecular lengths. We reveal that shorter molecules favor bonding with extracted metal adatoms and result in metal-organic hybrids, whereas longer molecules prefer to bond with lattice metal atoms. The conclusions are further confirmed by density functional theory calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...