Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 677(Pt B): 59-67, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39137563

ABSTRACT

The large-scale application of metal-air batteries strongly depends on the development of cost-effective, highly efficient, and durable bifunctional oxygen catalysts. In this work, a facile approach for preparing the monodisperse PtCo nanoalloy anchored the nitrogen-doped carbon nanotubes (PtCo/NCNT) for zinc-air batteries is reported. The nitrogen-doped carbon shell prevents PtCo nanoalloy from exfoliation, dissolution, and aggregation and enables the accessibility of electrolytes to the alloy surface and the electron transfer. Besides, the strong interaction between PtCo nanoalloy and nitrogen-doped carbon can efficiently modulate the electronic structure of the formed active sites. When used as a cathode catalyst, the constructed rechargeable zinc-air battery presents higher power density (268 mW cm-2), specific capacity (840 mAh g-1), and excellent stability. More importantly, the PtCo/NCNT catalyst allows the all-solid-state cell to exhibit remarkable flexibility and high round-trip efficiency at various bending states, demonstrating a potential possibility to replace the conventional Pt/C and RuO2 catalysts.

2.
J Med Virol ; 96(1): e29425, 2024 01.
Article in English | MEDLINE | ID: mdl-38258313

ABSTRACT

The emergence of rapid and continuous mutations of severe acute respiratory syndrome 2 (SARS-CoV-2) spike glycoprotein that increased with the Omicron variant points out the necessity to anticipate such mutations for conceiving specific and adaptable therapies to avoid another pandemic. The crucial target for the antibody treatment and vaccine design is the receptor binding domain (RBD) of the SARS-CoV-2 spike. It is also the site where the virus has shown its high ability to mutate and consequently escape immune response. We developed a robust and simple method for generating a large number of functional SARS-CoV-2 spike RBD mutants by error-prone PCR and a novel nonreplicative lentivirus-based system. We prepared anti-RBD wild type (WT) polyclonal antibodies and used them to screen and select for mutant libraries that escape inhibition of virion entry into recipient cells expressing human angiotensin-converting enzyme 2 and transmembrane serine protease 2. We isolated, cloned, and sequenced six mutants totally bearing nine mutation sites. Eight mutations were found in successive WT variants, including Omicron and other recombinants, whereas one is novel. These results, together with the detailed functional analyses of two mutants provided the proof of concept for our approach.


Subject(s)
COVID-19 , Lentivirus , Humans , Lentivirus/genetics , SARS-CoV-2/genetics , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL