Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 429
Filter
1.
J Proteomics ; 301: 105182, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38697284

ABSTRACT

Calpain is a non-lysozyme, calcium-dependent intracellular cysteine protease that has been shown to play a role in tumor proliferation, survival, migration, invasion, and apoptosis. Dysregulation of calpain expression is closely related to tumorigenesis. However, the role of calpain-8 (CAPN8), as a member of the calpain family, in pancreatic cancer (PC) is remains unclear. In elucidating the mechanism of CAPN8 in PC, a comprehensive bioinformatics analysis and in vitro experiments were conducted. The TCGA database was used to explore the expression level of CAPN8, and the results in PC tissues and cell lines were verified. Then, the correlation between CAPN8 and clinicopathological features was analyzed. Additionaly, promoter methylation, immune infiltration, and GO/KEGG enrichment analyses were performed. Lastly, the molecular mechanism of CAPN8 in PC was investigated by using cell counting kit (CCK) 8, transwell, wound healing, Western blot assays, and so on. Results indicate that CAPN8 was highly expressed in PC and correlated with poor prognosis and advanced TNM stage. In addition, a low level of immune infiltration was closely associated with the high expression level of CAPN8. Based on these findings, we hypothesized that CAPN8 is a potential biomarker that regulates progression of PC via EMT and the AKT/ERK pathway. SIGNIFICANCE: Through comprehensive biological information and in vitro experiments, CAPN8 has been confirmed to play an important role in regulating pancreatic cancer (PC) proliferation, migration and invasion. CAPN8 is found to be closely related to the diagnosis, survival and prognosis of PC. Above all, CAPN8 may be a potential biomarker for the diagnosis and prognosis of PC.


Subject(s)
Biomarkers, Tumor , Calpain , Epithelial-Mesenchymal Transition , MAP Kinase Signaling System , Pancreatic Neoplasms , Proto-Oncogene Proteins c-akt , Humans , Calpain/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Proto-Oncogene Proteins c-akt/metabolism , Male , Cell Line, Tumor , Female , Disease Progression , Gene Expression Regulation, Neoplastic , Middle Aged , Cell Proliferation , Prognosis , Cell Movement
2.
Biosens Bioelectron ; 259: 116387, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38754194

ABSTRACT

The incidence of esophageal cancer is positively associated with fumonisin contamination. It is necessary to develop methods for the rapid detection of fumonisins. In this work, a self-powered photoelectrochemical aptamer sensor based on ZnIn2S4/WO3 photoanode and Au@W-Co3O4 photocathode is proposed for the sensitive detection of fumonisin B1 (FB1). Among them, under visible light irradiation, the Z-type heterostructure of ZnIn2S4/WO3 acts as a photoanode to improve the electron transfer rate, which contributes to the enhancement of the photocathode signal and lays the foundation for a wider detection range. The Au@W-Co3O4 photocathode as a sensing interface reduces the probability of false positives (comparison of anode sensing platforms). The PEC sensor has a good working performance in the detection range (10 pg/mL-1000 ng/mL) with a detection limit of 2.7 pg/mL (S/N = 3). In addition, the sensor offers good selectivity, stability and excellent recoveries in real sample analysis. This work is expected to play a role in the field of analyzing environmental toxins.

3.
Sci Rep ; 14(1): 11370, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762700

ABSTRACT

According to the latest cancer research data, there are a significant number of new cancer cases and a substantial mortality rate each year. Although a substantial number of clinical patients are treated with existing cancer drugs each year, the efficacy is unsatisfactory. The incidence is still high and the effectiveness of most cancer drugs remains unsatisfactory. Therefore, we evaluated the human proteins for their causal relationship to for cancer risk and therefore also their potential as drug targets. We used summary tumors data from the FinnGen and cis protein quantitative trait loci (cis-pQTL) data from a genome-wide association study, and employed Mendelian randomization (MR) to explore the association between potential drug targets and nine tumors, including breast, colorectal, lung, liver, bladder, prostate, kidney, head and neck, pancreatic caners. Furthermore, we conducted MR analysis on external cohort. Moreover, Bidirectional MR, Steiger filtering, and colocalization were employed to validate the main results. The DrugBank database was used to discover potential drugs of tumors. Under the threshold of False discovery rate (FDR) < 0.05, results showed that S100A16 was protective protein and S100A14 was risk protein for human epidermal growth factor receptor 2-positive (HER-positive) breast cancer, phosphodiesterase 5A (PDE5A) was risk protein for colorectal cancer, and melanoma inhibitory activity (MIA) was protective protein for non-small cell lung carcinoma (NSCLC). And there was no reverse causal association between them. Colocalization analysis showed that S100A14 (PP.H4.abf = 0.920) and S100A16 (PP.H4.abf = 0.932) shared causal variation with HER-positive breast cancer, and PDE5A (PP.H4.abf = 0.857) shared causal variation with colorectal cancer (CRC). The MR results of all pQTL of PDE5A and MIA were consistent with main results. In addition, the MR results of MIA and external outcome cohort were consistent with main results. In this study, genetic predictions indicate that circulating S100 calcium binding protein A14 (S100A14) and S100 calcium binding protein A16 (S100A16) are associated with increase and decrease in the risk of HER-positive breast cancer, respectively. Circulating PDE5A is associated with increased risk of CRC, while circulating MIA is associated with decreased risk of NSCLC. These findings suggest that four proteins may serve as biomarkers for cancer prevention and as potential drug targets that could be expected for approval.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Neoplasms , Humans , Neoplasms/genetics , Quantitative Trait Loci , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease
4.
Biochem Pharmacol ; : 116259, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38705538

ABSTRACT

Mounting evidence from preclinical and clinical studies suggests that persistent inflammation functions as a driving force in the journey to cancer. Cyclooxygenase-2 (COX-2) is a key enzyme involved in inflammatory signaling. While being transiently upregulated upon inflammatory stimuli, COX-2 has been found to be consistently overexpressed in human colorectal cancer and several other malignancies. The association between chronic inflammation and cancer has been revisited: cancer can arise when inflammation fails to resolve. Besides its proinflammatory functions, COX-2 also catalyzes the production of pro-resolving as well as anti-inflammatory metabolites from polyunsaturated fatty acids. This may account for the side effects caused by long term use of some COX-2 inhibitory drugs during the cancer chemopreventive trials. This review summarizes the latest findings highlighting the dual functions of COX-2 in the context of its implications in the development, maintenance, and progression of cancer.

5.
New Phytol ; 242(3): 1289-1306, 2024 May.
Article in English | MEDLINE | ID: mdl-38426573

ABSTRACT

Jasmonate (JA) and abscisic acid (ABA) are two major phytohormones involved in pathogen resistance. However, how their biosynthesis is regulated is not well understood. We silenced NaWRKY70 in wild tobacco Nicotiana attenuata and determined its role in regulating genes involved in the production of JA, ABA and the phytoalexin capsidiol in response to the fungal pathogen Alternaria alternata using techniques including electrophoretic mobility shift, chromatin immunoprecipitation, transient overexpression and virus-induced gene silencing. Silencing NaWRKY70 dramatically reduced both basal and A. alternata-induced jasmonoyl-isoleucine (JA-Ile) and ABA. Further evidence showed that NaWRKY70 directly binds to the W-boxes of the promoters of NaAOS and NaJAR4 (JA biosynthesis), NaNCED1 and NaXD1-like (ABA biosynthesis), and NaMPK4 (ABA signaling) to activate their expression, while binding but repressing the expression of NaCYP707A4-like3 (ABA degradation). Additionally, NaWRKY70 regulates capsidiol production through its key enzyme genes NaEASs and NaEAHs, and interacts with its regulator NaERF2-like to enhance their expression, whereas ABA negatively regulates capsidiol biosynthesis. Our results highlight the key role of NaWRKY70 in controlling both JA-Ile and ABA production, as well as capsidiol production, thus providing new insight into the defense mechanism of plant resistance to A. alternata.


Subject(s)
Alternaria , Isoleucine/analogs & derivatives , Nicotiana , Plant Growth Regulators , Sesquiterpenes , Nicotiana/genetics , Phytoalexins , Plant Proteins/genetics , Plant Proteins/metabolism , Cyclopentanes/metabolism , Abscisic Acid/metabolism , Oxylipins/metabolism , Gene Expression Regulation, Plant
6.
Stem Cell Res ; 77: 103359, 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38460235

ABSTRACT

Parkinson's disease (PD) is a highly prevalent and severe neurodegenerative disease that affects more than 10 million individuals worldwide. Pathogenic mutations in LRP10 have been associated with autosomal dominant PD. Here, we report an induced pluripotent stem cell (iPSC) line generated from a PD patient harboring the LRP10 c.688C > T (p.Arg230Trp) variant. Skin fibroblasts from the PD patient were successfully reprogrammed into iPSCs that expressed pluripotency markers, a normal karyotype, and the capacity to differentiate into the three germ layers in vivo. This iPSC line is a potential resource for studying the pathogenic mechanisms of PD.

7.
FASEB J ; 38(5): e23436, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38430461

ABSTRACT

Chronic kidney disease (CKD) is a global health burden, with ineffective therapies leading to increasing morbidity and mortality. Renal interstitial fibrosis is a common pathway in advanced CKD, resulting in kidney function and structure deterioration. In this study, we investigate the role of FTO-mediated N6-methyladenosine (m6A) and its downstream targets in the pathogenesis of renal fibrosis. M6A modification, a prevalent mRNA internal modification, has been implicated in various organ fibrosis processes. We use a mouse model of unilateral ureteral obstruction (UUO) as an in vivo model and treated tubular epithelial cells (TECs) with transforming growth factor (TGF)-ß1 as in vitro models. Our findings revealed increased FTO expression in UUO mouse model and TGF-ß1-treated TECs. By modulating FTO expression through FTO heterozygous mutation mice (FTO+/- ) in vivo and small interfering RNA (siRNA) in vitro, we observed attenuation of UUO and TGF-ß1-induced epithelial-mesenchymal transition (EMT), as evidenced by decreased fibronectin and N-cadherin accumulation and increased E-cadherin levels. Silencing FTO significantly improved UUO and TGF-ß1-induced inflammation, apoptosis, and inhibition of autophagy. Further transcriptomic assays identified RUNX1 as a downstream candidate target of FTO. Inhibiting FTO was shown to counteract UUO/TGF-ß1-induced RUNX1 elevation in vivo and in vitro. We demonstrated that FTO signaling contributes to the elevation of RUNX1 by demethylating RUNX1 mRNA and improving its stability. Finally, we revealed that the PI3K/AKT pathway may be activated downstream of the FTO/RUNX1 axis in the pathogenesis of renal fibrosis. In conclusion, identifying small-molecule compounds that target this axis could offer promising therapeutic strategies for treating renal fibrosis.


Subject(s)
Adenine/analogs & derivatives , Renal Insufficiency, Chronic , Ureteral Obstruction , Mice , Animals , Kidney/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Transforming Growth Factor beta1/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Ureteral Obstruction/metabolism , Renal Insufficiency, Chronic/metabolism , Fibrosis , Demethylation , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
8.
Int J Mol Sci ; 25(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542267

ABSTRACT

As one of the most abundant groups in marine fish families, Gobiidae fish are important fishery resources in China, and some are also invasive species in certain regions worldwide. However, the phylogenetic relationships of Gobiidae fish remain ambiguous, and the study of their invasion-related genes is still scarce. This study used high-throughput sequencing technology to conduct a whole-genome survey of five Gobiidae fish species: Acanthogobius flavimanus, Acanthogobius stigmothonus, Favonigobius gymnauchen, Ctenotrypauchen microcephalus, and Tridentiger barbatus. De novo assembly of five fish genomes was performed, and genomic traits were compared through K-mer analysis. Among the five Gobiidae fish genomes, F. gymnauchen had the largest genome size (1601.98 Mb) and the highest heterozygosity (1.56%) and repeat rates (59.83%). Phylogenetic studies showed that A. flavimanus was most closely linked to A. stigmothonus, while Apogonidae and Gobiidae were closely related families. PSMC analysis revealed that C. microcephalus experienced a notable population expansion than the other four fish species in the Early Holocene. By using the KOG, GO, and KEGG databases to annotate single-copy genes, the annotated genes of the five fish were mainly classified as "signal transduction mechanisms", "cellular process", "cellular anatomical entity", and "translation". Acanthogobius flavimanus, A. stigmothonus, and T. barbatus had more genes classified as "response to stimulus" and "localization", which may have played an important role in their invasive processes. Our study also provides valuable material about Gobiidae fish genomics and genetic evolution.


Subject(s)
Genome, Mitochondrial , Perciformes , Humans , Animals , Phylogeny , Fishes/genetics , Perciformes/genetics , Evolution, Molecular
9.
Article in English | MEDLINE | ID: mdl-38342067

ABSTRACT

Acanthogobius ommaturus is one of the largest goby fish, and widely distributed in the Northwestern Pacific as an annual benthic fish. This study aims to report the gonadal transcriptome of A. ommaturus and identify differentially expressed genes (DEGs) between sexes. A total of 5460 (27.94 %) DEGs were detected from genome, with 3301 (16.89 %) biased towards males and 2159 (11.05 %) towards females. Analysis of 76 known vertebrate sex-related genes revealed multiple key genes, including the male-biased genes dmrt1 (Doublesex and Mab-3 related transcription factor 1) and amh (Anti-Mullerian Hormone), and the female-biased genes foxl2 (Forkhead Box L2) and cyp19a1a (Cytochrome P450 Aromatase 19 Subfamily A1). Furthermore, a genome-wide gene family analysis focused on the most significantly differentially expressed male-biased gene, dmrt1, was conducted using the chromosomal-level genome. Six Aodmrt genes were identified and subjected to phylogenetic and protein interaction network analyses. To validate the expression pattern, quantitative real-time PCR (qRT-PCR) was performed and compared with gonadal transcriptome data. The results showed that only dmrt1 exhibited significant male-bias, while the expression levels and sex differences of other dmrt genes in the gonads were inconclusive. Interestingly, the other dmrt genes displayed higher expression levels in other tissues, suggesting currently unknown functions. In conclusion, this study provides valuable genetic information contributing to the understanding of the sex determination mechanism of A. ommaturus and bony fish.


Subject(s)
Fish Proteins , Gonads , Transcription Factors , Transcriptome , Animals , Male , Female , Transcription Factors/genetics , Fish Proteins/genetics , Gonads/metabolism , Gene Expression Profiling , Perciformes/genetics , Phylogeny , Genome , Multigene Family
10.
Talanta ; 272: 125780, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38359722

ABSTRACT

Mercury ion (Hg2+) poses a serious threat to human health due to its high toxicity. In this study, a smartphone-based photoelectrochemical sensor based on oxygen vacancies (OVs) driven signal enhancement for mercury ion detection was designed. BiVO4-x/Bi2S3/AuNPs were combined with T-Hg2+-T recognition mode to construct a multi-sandwich photoelectrochemical sensor. On the one hand, the OVs can increase the adsorption of light by the materials and enhance the photocurrent response as well as the superconductivity of Au NPs to accelerate the charge transfer at the electrode interface. On the other hand, the multi-sandwich structure was exploited to increase the binding site of Hg2+, as well as the T-Hg2+-T structure for sensitive recognition of Hg2+ and signal amplification. The sensor showed good linearity for Hg2+ concentration in the range of 0.1 nM-1.0 µM with a detection limit of 4.8 pM (S/N = 3). Eventually the smartphone-based real-time detection sensor is expected to contribute to the future analysis of heavy metal ions.

11.
Redox Biol ; 70: 103062, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38320454

ABSTRACT

PURPOSE: To investigate the regulatory effect and mechanism of Vitamin D receptor (VDR) on mitochondrial function in renal tubular epithelial cell under diabetic status. METHODS: The diabetic rats induced by streptozotocin (STZ) and HK-2 cells under high glocose(HG)/transforming growth factor beta (TGF-ß) stimulation were used in this study. Calcitriol was administered for 24 weeks. Renal tubulointerstitial injury and some parameters of mitochondrial function including mitophagy, mitochondrial fission, mitochondrial ROS, mitochondrial membrane potential (MMP), mitochondrial ATP, Complex V activity and mitochondria-associated ER membranes (MAMs) integrity were examined. Additionally, paricalcitol, 3-MA (an autophagy inhibitor), VDR over-expression plasmid, VDR siRNA and Mfn2 siRNA were applied in vitro. RESULTS: The expression of VDR, Pink1, Parkin, Fundc1, LC3II, Atg5, Mfn2, Mfn1 in renal tubular cell of diabetic rats were decreased significantly. Calcitriol treatment reduced the levels of urinary albumin, serum creatinine and attenuated renal tubulointerstitial fibrosis in STZ induced diabetic rats. In addition, VDR agonist relieved mitophagy dysfunction, MAMs integrity, and inhibited mitochondrial fission, mitochondrial ROS. Co-immunoprecipitation analysis demonstrated that VDR interacted directly with Mfn2. Mitochondrial function including mitophagy, mitochondrial membrane potential (MMP), mitochondrial Ca2+, mitochondrial ATP and Complex V activity were decreased dramatically in HK-2 cells under HG/TGF-ß ambience. In vitro pretreatment of HK-2 cells with autophagy inhibitor 3-MA, VDR siRNA or Mfn2 siRNA negated the activating effects of paricalcitol on mitochondrial function. Pricalcitol and VDR over-expression plasmid activated Mfn2 and then partially restored the MAMs integrity. Additionally, VDR restored mitophagy was partially associated with MAMs integrity through Fundc1. CONCLUSION: Activated VDR could contribute to restore mitophagy through Mfn2-MAMs-Fundc1 pathway in renal tubular cell. VDR could recover mitochondrial ATP, complex V activity and MAMs integrity, inhibit mitochondrial fission and mitochondrial ROS. It indicating that VDR agonists ameliorate renal tubulointerstitial fibrosis in diabetic rats partially via regulation of mitochondrial function.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Receptors, Calcitriol , Animals , Rats , Adenosine Triphosphate/metabolism , Calcitriol/pharmacology , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Epithelial Cells/metabolism , Fibrosis , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , RNA, Small Interfering/metabolism , Transforming Growth Factor beta/metabolism
12.
Eur J Pharmacol ; 967: 176357, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38309677

ABSTRACT

The chemokines/chemokine receptors pathway significantly influences cell migration, particularly in recruiting immune cells to the tumor microenvironment (TME), impacting tumor progression and treatment outcomes. Emerging research emphasizes the involvement of chemokines in drug resistance across various tumor therapies, including immunotherapy, chemotherapy, and targeted therapy. This review focuses on the role of chemokines/chemokine receptors in pancreatic cancer (PC) development, highlighting their impact on TME remodeling, immunotherapy, and relevant signaling pathways. The unique immunosuppressive microenvironment formed by the interaction of tumor cells, stromal cells and immune cells plays an important role in the tumor proliferation, invasion, migration and therapeutic resistance. Chemokines/chemokine receptors, such as chemokine ligand (CCL) 2, CCL3, CCL5, CCL20, CCL21, C-X-C motif chemokine ligand (CXCL) 1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL8, CXCL9, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL16, CXCL17, and C-X3-C motif chemokine ligand (CX3CL)1, derived mainly from leukocyte cells, cancer-related fibroblasts (CAFs), pancreatic stellate cells (PSCs), and tumor-associated macrophages (TAMs), contribute to PC progression and treatment resistance. Chemokines recruit myeloid-derived suppressor cells (MDSC), regulatory T cells (Tregs), and M2 macrophages, inhibiting the anti-tumor activity of immune cells. Simultaneously, they enhance pathways like epithelial-mesenchymal transition (EMT), Akt serine/threonine kinase (AKT), extracellular regulated protein kinases (ERK) 1/2, and nuclear factor kappa-B (NF-κB), etc., elevating the risk of PC metastasis and compromising the efficacy of radiotherapy, chemotherapy, and anti-PD-1/PD-L1 immunotherapy. Notably, the CCLx-CCR2 and CXCLx-CXCR2/4 axis emerge as potential therapeutic targets in PC. This review integrates recent findings on chemokines and receptors in PC treatment, offering valuable insights for innovative therapeutic approaches.


Subject(s)
Pancreatic Neoplasms , Receptors, Chemokine , Humans , Receptors, Chemokine/metabolism , Ligands , Proto-Oncogene Proteins c-akt , Chemokines/metabolism , Pancreatic Neoplasms/therapy , Carcinogenesis , Tumor Microenvironment
13.
Heliyon ; 10(1): e23533, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38173486

ABSTRACT

This study was conducted to observe the effect of Chinese herbal compound on the treatment of colon cancer using AOM/DSS-induced C57BL/6J colon cancer mice and to validate potential influence on intestinal flora of mice. A colorectal cancer (CRC) mouse model was built with a total of 50 C57BL/6J mice that were induced by administrating AOM/DSS. These experimental animals were split up into 5 groups, a control group, a model group, and low-, medium- and high-dose Chinese herbal compound groups. All mice were given Chinese herbal compound treatment, and the colon tissues of each group were harvested with the length measured and the number of colon polyps accounted. The Ki-67 expression in the colon tissues was detected via immuno-histochemistry. Relative quantification of the expression of genes and proteins was determined through qPCR and WB assays. Contents of IL-6, TNF-α, IFN-γ, and IL-10 in serum and colon tissues of mice were determined by ELISA. An additional 16S rRNA sequencing analysis was implemented for the identification of mouse intestinal flora. The results suggested that all low-, medium- or high-dose Chinese herbal compound could markedly inhibit the shortening of colon length and significant number reduction of colon polyps in the model group. The relative expression of genes and proteins (PCNA, Muc16, and MMP-9) associated with proliferation in mouse colon tissues were inhibited. In addition, compared with the model group, the contents of IL-6, TNF-α, and IFN-γ in serum and colon tissues were substantially decreased in the high-dose Chinese herbal compound group, thereby reducing the structure damage in colon tissues and the infiltration degree of inflammatory cells. Besides, the expression of TLR4/MyD88/NF-κB protein was markedly decreased. The 16S rRNA sequencing analysis demonstrated that mice in the model group had decreased intestinal flora diversity, and there were significant changes in flora abundance and amino acid metabolism between the control group and the model group. Taken together, the treatment of Chinese herbal compound against CRC in this study might be regulated by the TLR4/MyD88/NF-κB signaling pathway, and the imbalance in intestinal flora was also closely related to CRC occurrence.

14.
BMC Nurs ; 23(1): 46, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233880

ABSTRACT

BACKGROUND: In public health emergencies, nurses are vulnerable to adverse reactions, especially job burnout. It is critical to identify nurses at risk of burnout early and implement interventions as early as possible. METHODS: A cross-sectional survey of the hospitals in Xiangyang City was conducted in January, 2023 using stratified cluster sampling. Anonymized data were collected from 1584 working nurses. The Impact of Events Scale-Revised (IES-R) and the Chinese version of the Maslach Burnout Inventory-General Survey (MBI-GS) were used to evaluate the post-traumatic stress disorder (PTSD) and burnout of nurses in public health emergencies. Logistic regression analysis was established to screen for risk factors of burnout, and a nomogram was developed to predict the risk of burnout. A calibration curve and the area under the receiver operating characteristic (ROC) curve were used to validate the nomogram internally. RESULTS: This study showed that only 3.7% of nurses were completely free of PTSD during a public health emergency. We found that PTSD varied by age, marital status, procreation status, length of service, employee status, and whether working in the ICU. The nurses aged 30 ~ 40 years old, single, married without children, non-regular employees, worked for less than three years or worked in the ICU had higher levels of PTSD. Regarding the prevalence of burnout, 27.4%, 48.5%, and 18.6% of nurses had a high level of emotional exhaustion (EE), depersonalization (DP), and diminished personal accomplishment (PA), respectively. There, 31.1% of nurses had more than two types of job burnout. The number of night shifts, the type of hospital, marital status, and the severity of PTSD were all associated with higher rates of exhaustion among nurses. As a graphical representation of the model, a nomogram was created and demonstrated excellent calibration and discrimination in both sets (AUC = 0.787). CONCLUSIONS: This study confirmed the PTSD and burnout are common problems for in-service nurses during public health emergencies and screened out the high-risk groups of job burnout. It is necessary to pay more attention nurses who are single and working in general hospitals with many night shifts, especially nurses with severe PTSD. Hospitals can set up nurses' personal health records to give timely warnings to nurses with health problems, and carry out support interventions to relieve occupational stress.

15.
J Exp Bot ; 75(3): 1063-1080, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-37870145

ABSTRACT

Production of the phytoalexins scopoletin and scopolin is regulated by jasmonate (JA) and ethylene signaling in Nicotiana species in response to Alternaria alternata, the necrotrophic fungal pathogen that causes brown spot disease. However, how these two signaling pathways are coordinated to control this process remains unclear. In this study, we found that the levels of these two phytoalexins and transcripts of their key enzyme gene, feruloyl-CoA 6'-hydroxylase 1 (NaF6'H1), were synergistically induced in Nicotiana attenuata by co-treatment with methyl jasmonate (MeJA) and ethephon. By combination of RNA sequencing and virus-induced gene silencing, we identified a WRKY transcription factor, NaWRKY70, which had a similar expression pattern to NaF6'H1 and was responsible for A. alternata-induced NaF6'H1 expression. Further evidence from stable transformed plants with RNA interference, knock out and overexpression of NaWRKY70 demonstrated that it is a key player in the synergistic induction of phytoalexins and plant resistance to A. alternata. Electrophoretic mobility shift, chromatin immunoprecipitation-quantitative PCR, and dual-luciferase assays revealed that NaWRKY70 can bind directly to the NaF6'H1 promoter and activate its expression. Furthermore, the key regulator of the ethylene pathway, NaEIN3-like1, can directly bind to the NaWRKY70 promoter and activate its expression. Meanwhile, NaMYC2s, important JA pathway transcription factors, also indirectly regulate the expression of NaWRKY70 and NaF6'H1 to control scopoletin and scopolin production. Our data reveal that these phytoalexins are synergistically induced by JA and ethylene signaling during A. alternata infection, which is largely mediated by NaWRKY70, thus providing new insights into the defense responses against A. alternata in Nicotiana species.


Subject(s)
Nicotiana , Phytoalexins , Nicotiana/genetics , Scopoletin , Ethylenes/metabolism , Cyclopentanes/metabolism , Oxylipins/metabolism , Transcription Factors/genetics
16.
Am J Emerg Med ; 75: 154-159, 2024 01.
Article in English | MEDLINE | ID: mdl-37950984

ABSTRACT

OBJECTIVES: Whether a longer no-flow (NF) interval affects the magnitude of response to epinephrine in the resuscitation has not been well studied. Therefore, this study aimed to evaluate the effect of NF interval on the vasopressor effect of initial epinephrine administration in a porcine model. METHODS: We enrolled 20 pigs from two randomized porcine experimental studies using a ventricular fibrillation (VF) cardiac arrest model. The first experiment subjects were resuscitated after 4 min of NF (Short NF group), followed by three cycles (6 min) of chest compression using a mechanical cardiopulmonary resuscitation device before epinephrine administration. Second experiment subjects received 6 min of NF (Long NF group), two cycles (4 min) of chest compressions, and administration of epinephrine. Defibrillation for VF was delivered 8 and 10 min after VF induction in the Short NF and Long NF groups, respectively. The mean arterial pressure (MAP) and cerebral perfusion pressure (CePP) in the 2-min resuscitation period after epinephrine administration were compared between the study groups using the Wilcoxon rank-sum test. The mean differences in the parameters between phases were also compared. RESULTS: Seven pigs in the Short NF group and 13 pigs in the Long NF group were included in the analysis. All 2-min resuscitation phases from 6 to 16 min after VF induction were compared between the study groups. The Short NF group showed higher MAP and CePP in all phases (p < 0.01). Change of mean MAP after the epinephrine administration was significantly different between the study groups: mean difference (95% confidence interval) of 16.6 (15.8-17.4) mmHg in the Short NF group and 4.2 (3.9-4.5) mmHg in the Long NF group. CONCLUSION: In the porcine VF cardiac arrest model, 6 min of NF before resuscitation may affect the vasopressor effect of the initial epinephrine administered compared to 4 min of NF. A short NF may play a role in maximizing the effect of epinephrine in advanced cardiovascular life support.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest , Humans , Swine , Animals , Ventricular Fibrillation/drug therapy , Heart Arrest/drug therapy , Epinephrine/pharmacology , Epinephrine/therapeutic use , Vasoconstrictor Agents/pharmacology , Vasoconstrictor Agents/therapeutic use
17.
Acta Biomater ; 175: 250-261, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38122884

ABSTRACT

Suicide gene therapy is a promising therapeutic model for ovarian cancer (OC), while suffering from poor gene delivery and limited therapeutic efficacy. To address this concern, here we reported the GSH-responsive morphology-transformable enantiomeric peptide assemblies as delivering vehicles for suicide genes and co-delivery of paclitaxel (PTX). Connecting a lipid-like amphiphile and a hydrophilic arginine segment through disulfide bonds led to the enantiomeric peptides. The enantiomeric peptide assemblies are able to simultaneously uptake plasmid DNA (pDNA) and PTX based on electrostatic and hydrophobic interactions. The resulting co-assemblies underwent GSH-responsive disulfide cleavage and thereby promoting their assembly from nanoparticles to nanofibers, leading to the co-release of pDNA and PTX. Cellular and animal studies confirmed the co-delivery of pDNA and PTX into OC cells and the cell apoptosis by the enantiomeric peptides. In addition, in vitro and in vivo experiments supported the advanced uptake and cytotoxicity for L-type peptide vehicles by OC cells, and their great potential for OC-imaging, growth-inhibition and apoptosis-induction compared to D-counterpart. Our results demonstrate that the GSH-responsive morphology-transformable chiral peptide assemblies accurately and simultaneously release suicide genes and chemodrugs at tumor sites, thus providing a new strategy for the development of delivering vehicles for suicide gene and establishment of new therapeutic models for ovarian cancer. STATEMENT OF SIGNIFICANCE: Appropriate delivery carriers are essential for the clinical translation of cancer gene therapy, including the emerging suicide gene therapy. By combining the advantages of morphological transformable vehicles with the chirality peptides towards their bioactivity, we developed the GSH-responsive morphology-transformable enantiomeric peptide assemblies as delivering vehicles for suicide genes and co-delivery of paclitaxel. The GSH-responsive assembly of the enantiomeric peptides allows for precise release of plasmid DNA and paclitaxel in cancer cells, and promotes the formation of nanofibrils that facilitate gene entering nuclei for transfection. The enantiomeric peptide-based vehicles show the chirality-dependent capability for inducing cell apoptosis and inhibiting tumor growth. Our findings demonstrate a new strategy for developing therapeutic models for ovarian cancer.


Subject(s)
Nanoparticles , Ovarian Neoplasms , Animals , Humans , Female , Paclitaxel/chemistry , Genetic Therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/therapy , Nanoparticles/chemistry , Peptides/pharmacology , Peptides/chemistry , DNA/genetics , Disulfides , Drug Delivery Systems/methods , Cell Line, Tumor
18.
Arch Pharm Res ; 46(11-12): 855-881, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38060103

ABSTRACT

The reprogramming of lipid metabolism and its association with oncogenic signaling pathways within the tumor microenvironment (TME) have emerged as significant hallmarks of cancer. Lipid metabolism is defined as a complex set of molecular processes including lipid uptake, synthesis, transport, and degradation. The dysregulation of lipid metabolism is affected by enzymes and signaling molecules directly or indirectly involved in the lipid metabolic process. Regulation of lipid metabolizing enzymes has been shown to modulate cancer development and to avoid resistance to anticancer drugs in tumors and the TME. Because of this, understanding the metabolic reprogramming associated with oncogenic progression is important to develop strategies for cancer treatment. Recent advances provide insight into fundamental mechanisms and the connections between altered lipid metabolism and tumorigenesis. In this review, we explore alterations to lipid metabolism and the pivotal factors driving lipid metabolic reprogramming, which exacerbate cancer progression. We also shed light on the latest insights and current therapeutic approaches based on small molecular inhibitors and phytochemicals targeting lipid metabolism for cancer treatment. Further investigations are worthwhile to fully understand the underlying mechanisms and the correlation between altered lipid metabolism and carcinogenesis.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Lipid Metabolism , Tumor Microenvironment , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinogenesis , Lipids
19.
Front Genet ; 14: 1285274, 2023.
Article in English | MEDLINE | ID: mdl-38075694

ABSTRACT

Objective: According to the 2020 data from the World Health Organization (WHO), cancers stand as one of the foremost contributors to global mortality. Revealing novel cancer risk factors and protective factors is of paramount importance in the prevention of disease occurrence. Studies on the relationship between chemokines and cancer are ongoing; however, due to the coordination of multiple potential mechanisms, the specific causal association remains unclear. Methods: We performed a bidirectional Mendelian randomization analysis to explore the causal association between serum chemokines and pan-carcinoma. All data is from the GWAS catalog and IEU Open GWAS database. The inverse-variance weighted (IVW) method is primarily employed for assessing the statistical significance of the findings. In addition, the significance threshold after the multiple hypothesis test (Bonferroni) was 0.0013, and the evidence of a potential association was considered if the p-value < 0.05, but remained greater than Bonferroni's threshold. Results: The results indicate that CCL1 (odds ratio, OR = 1.18), CCL2 (OR = 1.04), CCL8 (OR = 1.36), CCL14 (Colorectal, OR = 1.08, Small intestine, OR = 0.77, Lung, OR = 1.11), CCL15 (OR = 0.85), CCL18 (Breast, OR = 0.95, Prostate, OR = 0.96), CCL19 (Lung, OR = 0.66, Prostate, OR = 0.92), CCL20 (Lung, OR = 0.53, Thyroid, OR = 0.76), CCL21 (OR = 0.62), CCL22 (OR = 2.05), CCL23 (OR = 1.31), CCL24 (OR = 1.06), CCL27 (OR = 1.49), CCL28 (OR = 0.74), CXCL5 (OR = 0.95), CXCL9 (OR = 3.60), CXCL12 (Breast, OR = 0.87, Small intestine, OR = 0.58), CXCL13 (Breast, OR = 0.93, Lung, OR = 1.29), CXCL14 (Colon, OR = 1.40) and CXCL17 (OR = 1.07) are potential risk factors for cancers. In addition, there was a reverse causal association between CCL1 (OR = 0.94) and CCL18 (OR = 0.94) and breast cancer. Sensitivity analysis results were similar. The results of the other four MR Methods were consistent with the main results, and the leave-one-out method showed that the results were not driven by a Single nucleotide polymorphism (SNP). Moreover, there was no heterogeneity and pleiotropy in our analysis. Conclusion: Based on the two-sample MR Analysis method, we found that chemokines might be upstream factors of cancer pathogenesis. These results might provide new insights into the future use of chemokines as potential targets for cancer prevention and treatment. Our results also provide important clues for tumor prevention, and changes of serum chemokine concentration may be recognized as one of the features of precancerous lesions in future clinical trials.

20.
Cell Death Discov ; 9(1): 448, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38081815

ABSTRACT

Pancreatic cancer (PC) is mainly derived from the exocrine pancreatic ductal epithelial cells, and it is strongly aggressive malignant tumor. Due to its insidious onset and the lack of effective diagnostic biomarkers, PC currently remains one of the main causes of cancer-related mortality worldwide. Recent studies have found that hsa_circ_0001846 is involved in the progression of multiple cancers and has the potential to become biomarkers, but its function and mechanism in PC remains unclear. We found by qRT-PCR experiments that hsa_circ_0001846 was upregulated in PC cells and tissues, while circBase, Sanger sequencing, agarose gel electrophoresis and FISH experiments identified the splicing site, ring structure and cellular localization of hsa_circ_0001846. Various functional experiments by using the construction of small interfering RNA targeting hsa_circ_0001846 and overexpression plasmid demonstrated that hsa_circ_0001846 promoted the proliferation, migration and invasion of PC cells. Moreover, the tumor weight and volume of nude mice were significantly reduced after the stable knockdown of hsa_circ_0001846. In the mechanism exploration, RNA pull-down experiments and dual-luciferase experiments helped us to determine that hsa_circ_0001846 regulated the KRAS expression by sponging miR-204-3p in PC, thus playing a pro-cancer role. In this study, the effect of miR-204-3p on PC was also explored for the first time, and we found that knockdown of miR-204-3p reversed the tumor suppressive effect caused by silencing hsa_circ_0001846, and silencing KRAS also rescued the pro-cancer effect caused by overexpression of hsa_circ_0001846. In conclusion, our study revealed the pro-cancer role of hsa_circ_0001846 in PC, and for the first time identified the mechanism that hsa_circ_0001846 regulated KRAS by sponging miR-204-3p to promote PC progression and had the potential to become a cancer biomarker.

SELECTION OF CITATIONS
SEARCH DETAIL
...