Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717976

ABSTRACT

Hydrogels hold significant promise as drug delivery systems due to their distinct advantage of sustained localized drug release. However, the challenge of regulating the initial burst release while achieving precise control over degradation and drug-release kinetics persists. Herein, we present an ABA-type triblock copolymer-based hydrogel system with precisely programmable degradation and release kinetics. The resulting hydrogels were designed with a hydrophilic poly(ethylene oxide) midblock and a hydrophobic end-block composed of polyethers with varying ratios of ethoxyethyl glycidyl ether and tetrahydropyranyl glycidyl ether acetal pendant possessing different hydrolysis kinetics. This unique side-chain strategy enabled us to achieve a broad spectrum of precise degradation and drug-release profiles under mildly acidic conditions while maintaining the cross-linking density and viscoelastic modulus, which is unlike the conventional polyester-based backbone degradation system. Furthermore, programmable degradation of the hydrogels and release of active therapeutic agent paclitaxel loaded therein are demonstrated in an in vivo mouse model by suppressing tumor recurrence following surgical resection. Tuning of the fraction of two acetal pendants in the end-block provided delicate tailoring of hydrogel degradation and the drug release capability to achieve the desired therapeutic efficacy. This study not only affords a facile means to design hydrogels with precisely programmable degradation and release profiles but also highlights the critical importance of aligning the drug release profile with the target disease.

2.
J Control Release ; 369: 351-362, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38552963

ABSTRACT

Polymeric prodrug nanoparticles have gained increasing attention in the field of anticancer drug delivery because of their dual functions as a drug carrier and a therapeutic agent. Doxorubicin (DOX) is a highly effective chemotherapeutic agent for various cancers but causes cardiotoxicity. In this work, we developed polymeric prodrug (pHU) nanoparticles that serve as both a drug carrier of DOX and a therapeutic agent. The composition of pHU includes antiangiogenic hydroxybenzyl alcohol (HBA) and ursodeoxycholic acid (UDCA), covalently incorporated through hydrogen peroxide (H2O2)-responsive peroxalate. To enhance cancer cell specificity, pHU nanoparticles were surface decorated with taurodeoxycholic acid (TUDCA) to facilitate p-selectin-mediated cancer targeting. TUDCA-coated and DOX-loaded pHU nanoparticles (t-pHUDs) exhibited controlled release of DOX triggered by H2O2, characteristic of the tumor microenvironment. t-pHUDs also effectively suppressed cancer cell migration and vascular endothelial growth factor (VEGF) expression in response to H2O2. In animal studies, t-pHUDs exhibited highly potent anticancer activity. Notably, t-pHUDs, with their ability to accumulate preferentially in tumors due to the p-selectin targeting, surpassed the therapeutic efficacy of equivalent DOX and pHU nanoparticles alone. What is more, t-pHUDs significantly suppressed VEGF expression in tumors and mitigated hepato- and cardiotoxicity of DOX. Given their cancer targeting ability, enhanced therapeutic efficacy and minimized off-target toxicity, t-pHUDs present an innovative and targeted approach with great translational potential as an anticancer therapeutic agent.

3.
Diagnostics (Basel) ; 13(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37958215

ABSTRACT

Ultrasound contrast agents are clinically used for diagnosis of internal organs, but ultrasound contrast agents are rarely applied clinically in musculoskeletal disorders. Our study aims to comparatively analyze the differences between ultrasonographic images through peri-injury injection of the clinically used microbubble and researched nanoparticle contrast agents in various muscular injury models. To compare contrast-enhanced images in different muscle injury models, we prepared groups of rats with sham, laceration, punch, contusion, and toxin injection injuries. We measured H2O2 levels using the Amplex Red assay by extracting tissue from the damaged area. As comparative contrast agents, SonoVue®, a commercially available microbubble contrast agent, and poly(vanillinoxalte) (PVO) nanoparticles, which are H2O2-responsive nanoparticles, were used. The difference in contrast between the two contrast agents was recorded as an ultrasound movie, and J-image software 1.53p was used to quantify and analyze the maximum and minimum echogenicity values of the images after contrast enhancement. In the Amplex red assay for the highest H2O2 level in each muscle injury model, the maximum level showed 24 h after the modeling. In the sham rats, PVO injection showed no increased echogenicity except at the needle insertion site, but SonoVue® injection showed increased echo signal throughout the injected muscle immediately after injection. One day after the preparation of the lesion, PVO and SonoVue® were injected into the lesion site and ultrasound was performed on the lesion site. After the injection of PVO nanoparticles, contrast enhancement was observed at the lesion site immediately. SonoVue® injections, on the other hand, showed a widespread pattern of echo signals and an increase in echo retention only at the lesion site over time, but this was not clear. There were statistically significant differences between the highest and lowest echogenicity in PVO and SonoVue® contrast-enhanced images in all models. Contrast enhancement lasted more than 3 h in the PVO injection, but disappeared within 3 h in the SonoVue® injection. PVO nanoparticles showed the possibility of physiologic contrast by CO2 generated by conjugation with H2O2 generated by muscle injuries, and SonoVue® injection observed the possibility of microbubble contrast as a contrast agent with a pooling effect that lasts longer on the lesion. Further research is needed to investigate the use of various ultrasound contrast agents, including nanoparticles, in musculoskeletal disorders, as well as the potential for further utilities of microbubble contrast agents.

4.
Biomater Sci ; 11(19): 6600-6610, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37605830

ABSTRACT

Oxidative stress amplifying compounds could elicit selective killing of cancer cells with minimal toxicity to normal cells and also induce immunogenic cell death (ICD). However, compared to conventional anticancer drugs, oxidative stress amplifying compounds have inferior therapeutic efficacy. It can be postulated that the anticancer therapeutic efficacy and immunostimulating activity of oxidative stress amplifying hybrid prodrug (OSamp) could be fully maximized by employing ultrastable polymeric micelles as drug carriers. In this work, we developed tumour-targeted oxidative stress nanoamplifiers, composed of OSamp, amphiphilic poly(ethylene glycol) methyl ether-block-poly(cyclohexyloxy ethyl glycidyl ether)s (mPEG-PCHGE) and a lipopeptide containing Arg-Gly-Asp (RGD). Tumour targeted OSamp-loaded mPEG-PCHGE (T-POS) micelles exhibited excellent colloidal stability and significant cytotoxicity to cancer cells with the expression of DAMPs (damage-associated molecular patterns). In the syngeneic mouse tumour model, T-POS micelles induced significant apoptotic cell death to inhibit tumour growth without noticeable body weight changes. T-POS micelles also induced ICD and activated adaptive immune responses by increasing the populations of cytotoxic CD4+ and CD8+ T cells. Therefore, these results suggest that T-POS micelles hold great translational potential as immunostimulating anticancer nanomedicine.


Subject(s)
Antineoplastic Agents , Neoplasms , Prodrugs , Mice , Animals , Micelles , CD8-Positive T-Lymphocytes , Nanomedicine , Polymers/chemistry , Polyethylene Glycols/chemistry , Antineoplastic Agents/chemistry , Drug Carriers/chemistry , Prodrugs/pharmacology , Oxidative Stress , Neoplasms/drug therapy , Cell Line, Tumor
5.
ACS Nano ; 17(13): 12336-12346, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37382227

ABSTRACT

All trans-retinoic acid (atRA) has potent anti-inflammatory and antiplatelet activity, but its clinical translation as an antithrombotic drug has been hampered by its low therapeutic efficacy. Here, we describe a facile and elegant strategy that converts atRA into systemically injectable antithrombotic nanoparticles. The strategy involves the dimerization of two atRA molecules using a self-immolative boronate linker that is cleaved specifically by hydrogen peroxide (H2O2) to release anti-inflammatory hydroxybenzyl alcohol (HBA), followed by dimerization-induced self-assembly to generate colloidally stable nanoparticles. The boronated atRA dimeric prodrug (BRDP) could form injectable nanoparticles in the presence of fucoidan that serves as an emulsifier and a targeting ligand to P-selectin overexpressed on the damaged endothelium. In response to H2O2, fucoidan-decorated BRDP (f-BRDP) nanoassemblies dissociate to release both atRA and HBA, while scavenging H2O2. In a mouse model of ferric chloride (FeCl3)-induced carotid arterial thrombosis, f-BRDP nanoassemblies target the thrombosed vessel and significantly inhibit thrombus formation. The results demonstrate that dimerization of atRA molecules via a boronate linker enables the formation of stable nanoassemblies with several benefits: high drug loading, drug self-delivery, on-demand multiple antithrombotic actions, and simple fabrication of nanoparticles. Overall, this strategy provides a promising expedient and practical route for the development of translational self-deliverable antithrombotic nanomedicine.


Subject(s)
Carotid Artery Thrombosis , Nanoparticles , Prodrugs , Thrombosis , Animals , Mice , Prodrugs/pharmacology , Prodrugs/therapeutic use , Tretinoin/pharmacology , Tretinoin/therapeutic use , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/therapeutic use , Nanomedicine , Hydrogen Peroxide , Polymers/therapeutic use , Thrombosis/drug therapy , Carotid Artery Thrombosis/drug therapy , Anti-Inflammatory Agents/therapeutic use
6.
Biomaterials ; 298: 122127, 2023 07.
Article in English | MEDLINE | ID: mdl-37086554

ABSTRACT

Cancer cells are equipped with abundant antioxidants such as glutathione (GSH) that eliminate reactive oxygen species (ROS) to deteriorate the therapeutic efficacy of photodynamic therapy (PDT). Another challenge in PDT is circumventing PDT-induced hypoxic condition that provokes upregulation of pro-angiogenic factor such as vascular endothelial growth factor (VEGF). It is therefore reasonable to expect that therapeutic outcomes of PDT could be maximized by concurrent delivery of photosensitizers with GSH depleting agents and VEGF suppressors. To achieve cooperative therapeutic actions of PDT with in situ GSH depletion and VEGF suppression, we developed tumor targeted redox-regulating and antiangiogenic phototherapeutic nanoassemblies (tRAPs) composed of self-assembling disulfide-bridged borylbenzyl carbonate (ssBR), photosensitizer (IR780) and tumor targeting gelatin. As a framework of tRAPs, ssBR was rationally designed to form nanoconstructs that serve as photosensitizer carriers with intrinsic GSH depleting- and VEGF suppressing ability. tRAPs effectively depleted intracellular GSH to render cancer cells more vulnerable to ROS and also provoked immunogenic cell death (ICD) of cancer cells upon near infrared (NIR) laser irradiation. In mouse xenograft models, tRAPs preferentially accumulated in tumors and dramatically eradicated tumors with laser irradiation. The design rationale of tRAPs provides a simple and versatile strategy to develop self-boosting phototherapeutic agents with great potential in targeted cancer therapy.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Animals , Mice , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Vascular Endothelial Growth Factor A/metabolism , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Nanoparticles/therapeutic use , Phototherapy , Neoplasms/drug therapy , Glutathione/metabolism , Oxidation-Reduction
7.
Article in English | MEDLINE | ID: mdl-36749947

ABSTRACT

Liposomes have been extensively explored as drug carriers, but their clinical translation has been hampered by their low drug-loading content and premature leakage of drug payloads. It was reasoned that vesicle-forming prodrugs could be incorporated into the lipid bilayer at a high molar fraction and therefore serve as a therapeutic agent as well as a structural component in liposomal nanomedicine. Boronated retinoic acid (BORA) was developed as a prodrug, which can self-assemble with common lipids to form liposomes at a high molar fraction (40%) and release all-trans retinoic acid (atRA) and hydroxybenzyl alcohol (HBA) simultaneously, in response to hydrogen peroxide (H2O2). Here, we report fucoidan-coated BORA-incorporated liposomes (f-BORALP) as clot-targeted antithrombotic liposomal nanomedicine with H2O2-triggered multiple therapeutic actions. In the mouse model of carotid arterial thrombosis, f-BORALP preferentially accumulated in the injured blood vessel and significantly suppressed thrombus formation, demonstrating their potential as targeted antithrombotic nanomedicine. This study also provides valuable insight into the development of vesicle-forming and self-immolative prodrugs to exploit the benefits of liposomal drug delivery.

8.
Biomater Sci ; 10(21): 6160-6171, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36222413

ABSTRACT

Compared to normal cells, cancer cells are more susceptible to insults of prooxidants that generate ROS (reactive oxygen species) or scavenge antioxidants such as glutathione (GSH). Cancer cells undergo immunogenic cell death (ICD) by elevated oxidative stress. Herein, we report rationally designed F-ssPBCA nanoparticles as a tumor-targeting prooxidant, which generates ROS and scavenges GSH simultaneously to cooperatively amplify oxidative stress, leading to ICD. Prooxidant F-ssPBCA nanoparticles are composed of a disulfide-bridged GSH scavenging dimeric prodrug (ssPB) that self-assembles to form nanoconstructs and encapsulates ROS-generating BCA (benzoyloxy cinnamaldehyde). F-ssPBCA nanoparticles significantly elevate oxidative stress to kill cancer cells and also evoke ICD featured by the release of CRT (calreticulin), HMGB-1 (high mobility group box-1), and adenosine triphosphate (ATP). Animal studies revealed that F-ssPBCA nanoparticles accumulate in tumors preferentially and suppress tumor growth effectively. The results of this study demonstrate that prooxidant-mediated oxidative stress elevation is a highly effective strategy to kill cancer cells selectively and even evoke abundant ICD. We anticipate that oxidative stress amplifying F-ssPBCA nanoparticles hold tremendous translational potential as a tumor targeted ICD-inducing anticancer nanomedicine.


Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Prodrugs , Animals , Reactive Oxygen Species/metabolism , Calreticulin/pharmacology , Antioxidants/pharmacology , Prodrugs/pharmacology , Nanomedicine , Antineoplastic Agents/pharmacology , Oxidative Stress , Neoplasms/drug therapy , Glutathione/metabolism , Disulfides/metabolism , Adenosine Triphosphate/metabolism , HMGB Proteins/metabolism , HMGB Proteins/pharmacology , Cell Line, Tumor
9.
Biomacromolecules ; 23(9): 3887-3898, 2022 09 12.
Article in English | MEDLINE | ID: mdl-36007196

ABSTRACT

Cancer cells are more vulnerable to reactive oxygen species (ROS)-mediated oxidative stress than normal cells due to disturbed redox balance. It can be postulated that ROS-generating drug carriers exert anticancer actions, leading to combination anticancer therapy with drug payloads. Here, we report a ROS-generating polyprodrug of cinnamaldehyde (CA) that not only serves as a drug carrier but also synergizes with drug payloads. The polyprodrug of CA (pCA) incorporates ROS-generating CA in the backbone of an amphiphilic polymer through an acid-cleavable acetal linkage. pCA could self-assemble with tumor-targeting lipopeptide (DSPE-PEG-RGD) and encapsulate doxorubicin (DOX) to form T-pCAD micelles. At acidic pH, T-pCAD micelles release both CA and DOX to exert synergistic anticancer actions. Animal studies using mouse xenograft models revealed that T-pCAD micelles accumulate in tumors preferentially and suppress the tumor growth significantly. Based on the oxidative stress amplification and acid-responsiveness, ROS-generating pCAD micelles hold tremendous potential as drug carriers for combination anticancer therapy.


Subject(s)
Micelles , Neoplasms , Animals , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Carriers/therapeutic use , Drug Liberation , Humans , Hydrogen-Ion Concentration , Mice , Neoplasms/drug therapy , Neoplasms/pathology , Oxidative Stress , Reactive Oxygen Species
10.
Biomaterials ; 287: 121681, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35917709

ABSTRACT

Stimulus-responsive self-assembling prodrug-based nanomedicine has emerged as a novel paradigm in controlled drug delivery. All-trans retinoic acid (RA), one of vitamin A metabolites, induces apoptotic cancer cell death, but its clinical applications are limited by weak anticancer efficacy. To fully maximize the therapeutic potential of RA, we exploited the unique chemistry of arylboronic acid which undergoes hydrogen peroxide (H2O2)-triggered degradation to release quinone methide (QM) that alkylates glutathione (GSH) to disrupt redox homeostasis and is also converted into hydroxybenzyl alcohol (HBA) to suppress the expression of vascular endothelial growth factor (VEGF). Here, we report that boronated retinoic acid prodrug (RABA) can be formulated into self-deliverable nanoassemblies which release both RA and QM in a H2O2-triggered self-immolative manner to exert cooperative anticancer activities. RABA nanoassemblies exert anticancer effects by inducing reactive oxygen species (ROS)-mediated apoptosis, eliciting immunogenic cell death (ICD) and suppressing angiogenic VEGF expression. The excellent anticancer efficacy of RABA nanoassemblies can be explained by benefits of self-assembling prodrug-based drug self-delivery and cooperative anticancer actions. The design strategy of RABA would provide a new insight into the rational design of self-deliverable and self-immolative boronated prodrug nanoassemblies for targeted cancer therapy.

11.
Biomaterials ; 284: 121515, 2022 05.
Article in English | MEDLINE | ID: mdl-35429813

ABSTRACT

Self-assembling prodrugs are able to form stable nanoparticles without additional excipients and therefore have gained increasing interest in the field of drug delivery. As a natural derivative of vitamin A, all-trans retinoic acid (atRA) exerts antioxidant, anti-inflammatory, and immunostimulatory effects. However, the clinical translation of atRA has been hampered by its insufficient therapeutic efficacy. In this work, to fully maximize the therapeutic potential of atRA, we developed delicately designed self-assembling RABA (atRA-based hybrid prodrug) as a hybrid prodrug of atRA and hydroxybenzyl alcohol (HBA). RABA could form nanoassemblies and decompose to release atRA and HBA simultaneously in response to hydrogen peroxide (H2O2). In a mouse model of hepatic ischemia/reperfusion (IR) injury, RABA nanoassemblies accumulated in liver preferentially and exerted highly potent antioxidant, anti-inflammatory, and antiapoptotic effects, leading to effective protection of liver from IR injury. RABA nanoassemblies exhibited significantly higher therapeutic efficacy than the combination of equivalent atRA and HBA. Given its H2O2-responsiveness, self-assembling and self-immolating behaviors, and cooperative therapeutic actions, RABA nanoassemblies have great potential as a pure nanodrug for hepatic IR injury. This study also provides a new valuable addition in the development of prodrug self-assemblies that will emerge as next generation of drugs.


Subject(s)
Nanoparticles , Prodrugs , Reperfusion Injury , Animals , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Hydrogen Peroxide/pharmacology , Ischemia/drug therapy , Liver , Mice , Nanoparticles/therapeutic use , Prodrugs/pharmacology , Prodrugs/therapeutic use , Reperfusion Injury/drug therapy , Tretinoin/pharmacology
12.
Nanomaterials (Basel) ; 11(10)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34685012

ABSTRACT

Ultrasound is clinically used for diagnosis and interventions for musculoskeletal injuries like muscle contusion, but contrast of ultrasonography still remains a challenge in the field of the musculoskeletal system. A level of hydrogen peroxide (H2O2) is known to be elevated during mechanical tissue damage and therefore H2O2 can be exploited as a diagnostic and therapeutic marker for mechanical injuries in the musculoskeletal system. We previously developed poly(vanillin-oxalate) (PVO) as an inflammation-responsive polymeric prodrug of vanillin, which is designed to rapidly respond to H2O2 and exert antioxidant and anti-inflammatory activities. The primary aim of this study is to verify whether PVO nanoparticles could serve as contrast agents as well as therapeutic agents for musculoskeletal injuries simultaneously. In a rat model of contusion-induced muscle injury, PVO nanoparticles generated CO2 bubbles to enhance the ultrasound contrast in the injury site. A single intramuscular injection of PVO nanoparticles also suppressed contusion-induced muscle damages by inhibiting the expression of pro-inflammatory cytokines and inflammatory cell infiltration. We, therefore, anticipate that PVO nanoparticles have great translational potential as not only ultrasound imaging agents but also therapeutic agents for the musculoskeletal disorders such as contusion.

SELECTION OF CITATIONS
SEARCH DETAIL
...