Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(20): 200801, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38829067

ABSTRACT

A fully homomorphic encryption system enables computation on encrypted data without the necessity for prior decryption. This facilitates the seamless establishment of a secure quantum channel, bridging the server and client components, and thereby providing the client with secure access to the server's substantial computational capacity for executing quantum operations. However, traditional homomorphic encryption systems lack scalability, programmability, and stability. In this Letter, we experimentally demonstrate a proof-of-concept implementation of a homomorphic encryption scheme on a compact quantum chip, verifying the feasibility of using photonic chips for quantum homomorphic encryption. Our work not only provides a solution for circuit expansion, addressing the longstanding challenge of scalability while significantly reducing the size of quantum network infrastructure, but also lays the groundwork for the development of highly sophisticated quantum fully homomorphic encryption systems.

2.
Nat Commun ; 15(1): 2607, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521827

ABSTRACT

Artificial intelligence has gained significant attention for exploiting optical scattering for optical encryption. Conventional scattering media are inevitably influenced by instability or perturbations, and hence unsuitable for long-term scenarios. Additionally, the plaintext can be easily compromised due to the single channel within the medium and one-to-one mapping between input and output. To mitigate these issues, a stable spin-multiplexing disordered metasurface (DM) with numerous polarized transmission channels serves as the scattering medium, and a double-secure procedure with superposition of plaintext and security key achieves two-to-one mapping between input and output. In attack analysis, when the ciphertext, security key, and incident polarization are all correct, the plaintext can be decrypted. This system demonstrates excellent decryption efficiency over extended periods in noisy environments. The DM, functioning as an ultra-stable and active speckle generator, coupled with the double-secure approach, creates a highly secure speckle-based cryptosystem with immense potentials for practical applications.

3.
Eur J Pharmacol ; 970: 176485, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38492878

ABSTRACT

Alzheimer's disease (AD) exhibits a higher incidence rate among older women, and dysregulation of the hypothalamic-pituitary-gonadal (HPG) axis during aging is associated with cognitive impairments and the development of dementia. luteinizing hormone (LH) has an important role in CNS function, such as mediating neuronal pregnenolone production, and modulating neuronal plasticity and cognition. The sex differences in LH and its impact on Aß deposition in AD individuals remain unclear, with no reported specific mechanisms. Here, we show through data mining that LH-related pathways are significantly enriched in female AD patients. Additionally, LH levels are elevated in female AD patients and exhibit a negative correlation with cognitive levels but a positive correlation with AD pathology levels, and females exhibit a greater extent of AD pathology, such as Aß deposition. In vivo, we observed that the exogenous injection of LH exacerbated behavioral impairments induced by Aß1-42 in mice. LH injection resulted in worsened neuronal damage and increased Aß deposition. In SH-SY5Y cells, co-administration of LH with Aß further exacerbated Aß-induced neuronal damage. Furthermore, LH can dose-dependently decrease the levels of NEP and LHR proteins while increasing the expression of GFAP and IBA1 in vivo and in vitro. Taken together, these results indicate that LH can exacerbate cognitive impairment and neuronal damage in mice by increasing Aß deposition. The potential mechanism may involve the reduction of NEP and LHR expression, along with the exacerbation of Aß-induced inflammation.


Subject(s)
Alzheimer Disease , Neuroblastoma , Peptide Fragments , Female , Humans , Mice , Male , Animals , Aged , Alzheimer Disease/metabolism , Luteinizing Hormone , Sex Characteristics , Mice, Transgenic , Amyloid beta-Peptides/metabolism , Disease Models, Animal , Amyloid beta-Protein Precursor/metabolism
4.
Adv Sci (Weinh) ; 11(19): e2400403, 2024 May.
Article in English | MEDLINE | ID: mdl-38483033

ABSTRACT

Improving interface connectivity of magnetic nanoparticles in carbon aerogels is crucial, yet challenging for assembling lightweight, elastic, high-performance, and multifunctional carbon architectures. Here, an in situ growth strategy to achieve high dispersion of metal-organic frameworks (MOFs)-anchored cellulose nanofibrils to enhance the interface connection quality is proposed. Followed by a facile freeze-casting and carbonization treatment, sustainable biomimetic porous carbon aerogels with highly dispersed and closely connected MOF-derived magnetic nano-capsules are fabricated. Thanks to the tight interface bonding of nano-capsule microstructure, these aerogels showcase remarkable mechanical robustness and flexibility, tunable electrical conductivity and magnetization intensity, and excellent electromagnetic wave absorption performance. Achieving a reflection loss of -70.8 dB and a broadened effective absorption bandwidth of 6.0 GHz at a filling fraction of merely 2.2 wt.%, leading to a specific reflection loss of -1450 dB mm-1, surpassing all carbon-based aerogel absorbers so far reported. Meanwhile, the aerogel manifests high magnetic sensing sensibility and excellent thermal insulation. This work provides an extendable in situ growth strategy for synthesizing MOF-modified cellulose nanofibril structures, thereby promoting the development of high-value-added multifunctional magnetic carbon aerogels for applications in electromagnetic compatibility and protection, thermal management, diversified sensing, Internet of Things devices, and aerospace.

5.
Blood Cancer Discov ; 5(2): 106-113, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38194367

ABSTRACT

A subset of patients with diffuse large B-cell lymphoma (DLBCL) treated with CD19 chimeric antigen receptor (CAR) T-cell therapy have poor clinical outcomes. We report serum proteins associated with severe immune-mediated toxicities and inferior clinical responses in 146 patients with DLBCL treated with axicabtagene ciloleucel. We develop a simple stratification based on pre-lymphodepletion C reactive protein (CRP) and ferritin to classify patients into low-, intermediate-, and high-risk groups. We observe that patients in the high-risk category were more likely to develop grade ≥3 toxicities and had inferior overall and progression-free survival. We sought to validate our findings with two independent international cohorts demonstrating that patients classified as low-risk have excellent efficacy and safety outcomes. Based on routine and readily available laboratory tests that can be obtained prior to lymphodepleting chemotherapy, this simple risk stratification can inform patient selection for CAR T-cell therapy. SIGNIFICANCE: CAR T-cell therapy has changed the treatment paradigm for patients with relapsed/refractory hematologic malignancies. Despite encouraging efficacy, a subset of patients have poor clinical outcomes. We show that a simple clinically applicable model using pre-lymphodepletion CRP and ferritin can identify patients at high risk of poor outcomes. This article is featured in Selected Articles from This Issue, p. 80.


Subject(s)
Hematologic Neoplasms , Lymphoma, Large B-Cell, Diffuse , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/therapeutic use , Lymphoma, Large B-Cell, Diffuse/therapy , Adaptor Proteins, Signal Transducing , Antigens, CD19/therapeutic use , Blood Proteins , C-Reactive Protein , Ferritins
6.
Nano Lett ; 24(3): 844-851, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38190513

ABSTRACT

Holography holds tremendous promise in applications such as immersive virtual reality and optical communications. With the emergence of optical metasurfaces, planar optical components that have the remarkable ability to precisely manipulate the amplitude, phase, and polarization of light on the subwavelength scale have expanded the potential applications of holography. However, the realization of metasurface-based full-color vectorial holography remains particularly challenging. Here, we report a general approach utilizing a modified Gerchberg-Saxton algorithm to achieve spatially aligned full-color display and incorporating wavelength information with an image compensation strategy. We combine the Pancharatnam-Berry phase and pairs of exceptional points to address the issue of redundant twin images that generally appear for the two orthogonal circular polarizations and to enable full polarization control of the vectorial field. Our results enable the realization of an asymmetric full-color vectorial meta-hologram, paving the way for the development of full-color display, complex beam generation, and secure data storage applications.

7.
Nat Commun ; 15(1): 232, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177166

ABSTRACT

Exceptional points (EPs) can achieve intriguing asymmetric control in non-Hermitian systems due to the degeneracy of eigenstates. Here, we present a general method that extends this specific asymmetric response of EP photonic systems to address any arbitrary fully-polarized light. By rotating the meta-structures at EP, Pancharatnam-Berry (PB) phase can be exclusively encoded on one of the circular polarization-conversion channels. To address any arbitrary wavefront, we superpose the optical signals originating from two orthogonally polarized -yet degenerate- EP eigenmodes. The construction of such orthogonal EP eigenstates pairs is achieved by applying mirror-symmetry to the nanostructure geometry flipping thereby the EP eigenmode handedness from left to right circular polarization. Non-Hermitian reflective PB metasurfaces designed using such EP superposition enable arbitrary, yet unidirectional, vectorial wavefront shaping devices. Our results open new avenues for topological wave control and illustrate the capabilities of topological photonics to distinctively operate on arbitrary polarization-state with enhanced performances.

8.
Psychopharmacology (Berl) ; 241(3): 525-542, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38277004

ABSTRACT

RATIONALE: The plasma ceramide levels in Alzheimer's disease (AD) patients are found abnormally elevated, which is related to cognitive decline. OBJECTIVES: This research was aimed to investigate the mechanisms of aberrant elevated ceramides in the pathogenesis of AD. RESULTS: The ICR mice intracerebroventricularly injected with Aß1-42 and APP/PS1 transgenic mice were employed as AD mice. The cognitive deficiency, impaired episodic and spatial memory were observed without altered spontaneous ability. The serum levels of p-tau and ceramide were evidently elevated. The modified expressions and activities of glycogen synthase kinase-3ß (GSK-3ß) and protein phosphatase 2A (PP2A) influenced the serum content of p-tau. The levels of ceramide synthesis-related genes including sptlc1, sptlc2, cers2, and cers6 in the liver of AD mice were increased, while the ceramide degradation-related gene asah2 did not significantly change. The regulations of these genes were conducted by activated nuclear factor kappa-B (NF-κB) signaling. NF-κB, promoted by free fatty acid (FFA), also increased the hepatic concentrations of proinflammatory cytokines. The FFA amount was modulated by fatty acid synthesis-related genes acc1 and srebp-1c. Besides, the decreased levels of pre-proopiomelanocortin (pomc) mRNA and increased agouti-related protein (agrp) mRNA were found in the hypothalamus without significant alteration of melanocortin receptor 4 (MC4R) mRNA. The bioinformatic analyses proved the results using GEO datasets and AlzData. CONCLUSIONS: Ceramide was positively related to the increased p-tau and impaired cognitive function. The increased generation of ceramide and endoplasmic reticulum stress in the hypothalamus was positively related to fatty acid synthesis and NF-κB signaling via brain-liver axis.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Mice , Humans , Animals , Alzheimer Disease/metabolism , NF-kappa B , Ceramides/metabolism , Glycogen Synthase Kinase 3 beta , Mice, Inbred ICR , Mice, Transgenic , RNA, Messenger , Fatty Acids , tau Proteins/metabolism
9.
Sensors (Basel) ; 24(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38257698

ABSTRACT

The bent-blade cutter is widely used in machining typical deep-cavity parts such as turbine discs and disc shafts, but few scholars have studied the dynamics of the turning process. The existing mechanism of regenerative chatter in the metal-cutting process does not consider the influence of bending and torsional vibration, the change of tool profile and the complex machining geometry, so it cannot be directly used to reveal the underlying cause of the chatter phenomena in the deep inner cavity part turning process. This paper attempts to investigate the dynamic problem of the bent-blade cutter turning process. The dynamic model of a bent-blade cutter is proposed by considering the regenerative chatter effect. Based on the extended Timoshenko beam element (E-TBM) theory and finite element method (FEM), the coupling between the bending vibrations and the torsional vibrations, as well as the dynamic cutting forces, are modeled along the turning path. The vibration characteristics of the bending-torsion combination of cutter board and cutter bar, together with the dynamical governing equation, were analyzed theoretically. The chatter stability of a bent-blade cutter with a bending and torsion combination effect is predicted in the turning process. A series of turning experiments are carried out to verify the accuracy and efficiency of the presented model. Furthermore, the influence of cutting parameters on the cutting process is analyzed, and the results can be used to optimize the cutting parameters for suppressing machining vibration and improving machining process stability.

10.
Rev Neurosci ; 35(3): 341-354, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38157427

ABSTRACT

Sex differences exist in the onset and progression of Alzheimer's disease. Globally, women have a higher prevalence, while men with Alzheimer's disease experience earlier mortality and more pronounced cognitive decline than women. The cause of sex differences in Alzheimer's disease remains unclear. Accumulating evidence suggests the potential role of X-linked genetic factors in the sex difference of Alzheimer's disease (AD). During embryogenesis, a remarkable process known as X-chromosome inactivation (XCI) occurs in females, leading to one of the X chromosomes undergoing transcriptional inactivation, which balances the effects of two X chromosomes in females. Nevertheless, certain genes exceptionally escape from XCI, which provides a basis for dual expression dosage of specific genes in females. Based on recent research findings, we explore key escape genes and their potential therapeutic use associated with Alzheimer's disease. Also, we discuss their possible role in driving the sex differences in Alzheimer's disease. This will provide new perspectives for precision medicine and gender-specific treatment of AD.


Subject(s)
Alzheimer Disease , Chromosomes, Human, X , Female , Humans , Male , Chromosomes, Human, X/genetics , Sex Characteristics , Alzheimer Disease/genetics , X Chromosome Inactivation/genetics , Genes, X-Linked
SELECTION OF CITATIONS
SEARCH DETAIL