Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Plant ; 17(4): 614-630, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38454602

ABSTRACT

The infection of host plants by many different viruses causes reactive oxygen species (ROS) accumulation and yellowing symptoms, but the mechanisms through which plant viruses counteract ROS-mediated immunity to facilitate infection and symptom development have not been fully elucidated. Most plant viruses are transmitted by insect vectors in the field, but the molecular mechanisms underlying virus‒host-insect interactions are unclear. In this study, we investigated the interactions among wheat, barley yellow dwarf virus (BYDV), and its aphid vector and found that the BYDV movement protein (MP) interacts with both wheat catalases (CATs) and the 26S proteasome ubiquitin receptor non-ATPase regulatory subunit 2 homolog (PSMD2) to facilitate the 26S proteasome-mediated degradation of CATs, promoting viral infection, disease symptom development, and aphid transmission. Overexpression of the BYDV MP gene in wheat enhanced the degradation of CATs, which leading to increased accumulation of ROS and thereby enhanced viral infection. Interestingly, transgenic wheat lines overexpressing BYDV MP showed significantly reduced proliferation of wingless aphids and an increased number of winged aphids. Consistent with this observation, silencing of CAT genes also enhanced viral accumulation and reduced the proliferation of wingless aphids but increased the occurrence of winged aphids. In contrast, transgenic wheat plants overexpressing TaCAT1 exhibited the opposite changes and showed increases in grain size and weight upon infection with BYDV. Biochemical assays demonstrated that BYDV MP interacts with PSMD2 and promotes 26S proteasome-mediated degradation of TaCAT1 likely in a ubiquitination-independent manner. Collectively, our study reveals a molecular mechanism by which a plant virus manipulates the ROS production system of host plants to facilitate viral infection and transmission, shedding new light on the sophisticated interactions among viruses, host plants, and insect vectors.


Subject(s)
Aphids , Luteovirus , Proteasome Endopeptidase Complex , Virus Diseases , Animals , Triticum , Aphids/genetics , Catalase , Viral Proteins , Reactive Oxygen Species , Luteovirus/genetics , Plants, Genetically Modified , Plant Diseases
2.
New Phytol ; 242(5): 2115-2131, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38358006

ABSTRACT

Drought is one of the major environmental constraints for wheat production world-wide. As the progenitor and genetic reservoir of common wheat, emmer wheat is considered as an invaluable gene pool for breeding drought-tolerant wheat. Combining GWAS and eGWAS analysis of 107 accessions, we identified 86 QTLs, 105 462 eQTLs as well as 68 eQTL hotspots associating with drought tolerance (DT) in emmer wheat. A complex regulatory network composed of 185 upstream regulator and 2432 downstream drought-responsive candidates was developed, of which TtOTS1 was found to play a negative effect in determining DT through affecting root development. This study sheds light on revealing the genetic basis underlying DT, which will provide the indispensable genes and germplasm resources for elite drought tolerance wheat improvement and breeding.


Subject(s)
Droughts , Genome-Wide Association Study , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/physiology , Quantitative Trait Loci/genetics , Adaptation, Physiological/genetics , Gene Expression Regulation, Plant , Gene Regulatory Networks , Genes, Plant , Polymorphism, Single Nucleotide/genetics , Phenotype , Plant Roots/genetics , Plant Roots/physiology , Drought Resistance
3.
J Mater Chem B ; 11(22): 4865-4873, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37161476

ABSTRACT

Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder characterized by the synaptic and neuronal loss, which results in cognitive impairment in particular learning and memory. Currently, AD is incurable and no single confirmative test can clinically be used to diagnose AD. In light of the complex and multifactorial nature of AD etiology, the development of multifunctional/multi-target drugs that act on multiple pathological pathways and mechanisms shows great therapeutic potential for intervention of this devastating disease. We report herein a multifunctional theranostic cyanine, SLCOOH, which serves not only as a highly sensitive fluorescent probe for real-time imaging of amyloid-ß (Aß) contents in different age groups of transgenic (Tg) AD mice but also as an effective therapeutic agent for early AD intervention via multiple pathological targets in the AD mouse model. Remarkably, treatment with SLCOOH gives rise to multiple therapeutic benefits, including the amelioration of cognitive decline, a reduction in Aß levels, a decrease in hyperphosphorylated tau proteins and tau depositions, and the alleviation of synaptic loss and dysfunctions in young triple Tg AD mice. Our results have demonstrated that in addition to superior Aß imaging capability, SLCOOH exhibits versatile and effective multiple modes of drug action, signifying outstanding therapeutic potential to treat early onset AD. Our work also paves the way for the development of effective Aß-targeted theranostic agents for AD.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Precision Medicine , Amyloid beta-Peptides/metabolism , tau Proteins , Mice, Transgenic , Carbazoles/therapeutic use
4.
J Biol Chem ; 299(4): 103052, 2023 04.
Article in English | MEDLINE | ID: mdl-36813236

ABSTRACT

Phytoplasmas are insect-borne bacterial pathogens capable of secreting effectors into host cells and interfering with host plant defense response processes. Previous studies have found that the Candidatus Phytoplasma tritici effector SWP12 binds to and destabilizes the wheat transcription factor TaWRKY74, increasing wheat susceptibility to phytoplasmas. Here, we used a Nicotiana benthamiana transient expression system to identify two key functional sites of SWP12 and screened a series of truncated mutants and amino acid substitution mutants to determine whether they inhibit Bax-induced cell death. Using a subcellular localization assay and online structure analysis websites, we found that structure rather than intracellular localization probably affects the function of SWP12. D33A and P85H are two inactive substitution mutants, neither of which interacts with TaWRKY74, and P85H does not inhibit Bax-induced cell death, suppress flg22-triggered reactive oxygen species (ROS) bursts, degrade TaWRKY74, or promote phytoplasma accumulation. D33A can weakly suppress Bax-induced cell death and flg22-triggered ROS bursts and degrade a portion of TaWRKY74 and weakly promote phytoplasma accumulation. S53L, CPP, and EPWB are three SWP12 homolog proteins from other phytoplasmas. Sequence analysis revealed that D33 was conserved in these proteins, and they exhibited the same polarity at P85. Transient expression in N. benthamiana showed that these proteins could inhibit Bax-induced cell death and suppress ROS bursts. Our findings clarified that P85 and D33 of SWP12 play critical and minor roles, respectively, in suppressing the plant defense response and that they play a preliminary role in determining the functions of homologous proteins.


Subject(s)
Phytoplasma , Phytoplasma/chemistry , Phytoplasma/metabolism , Bacterial Proteins/metabolism , Amino Acids/metabolism , Reactive Oxygen Species/metabolism , bcl-2-Associated X Protein/metabolism , Plants/metabolism , Plant Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL