Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(15): eadg0292, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37043565

ABSTRACT

Underwater devices are critical for environmental applications. However, existing prototypes typically use bulky, noisy actuators and limited configurations. Consequently, they struggle to ensure noise-free and gentle interactions with underwater species when realizing practical functions. Therefore, we developed a jellyfish-like robotic platform enabled by a synergy of electrohydraulic actuators and a hybrid structure of rigid and soft components. Our 16-cm-diameter noise-free prototype could control the fluid flow to propel while manipulating objects to be kept beneath its body without physical contact, thereby enabling safer interactions. Its against-gravity speed was up to 6.1 cm/s, substantially quicker than other examples in literature, while only requiring a low input power of around 100 mW. Moreover, using the platform, we demonstrated contact-based object manipulation, fluidic mixing, shape adaptation, steering, wireless swimming, and cooperation of two to three robots. This study introduces a versatile jellyfish-like robotic platform with a wide range of functions for diverse applications.

2.
Sci Adv ; 8(34): eabq2345, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36026449

ABSTRACT

The fluid manipulation capabilities of current artificial cilia are severely handicapped by the inability to reconfigure near-surface flow on various static or dynamically deforming three-dimensional (3D) substrates. To overcome this challenge, we propose an electrically driven soft-robotic ciliated epidermis with multiple independently controlled polypyrrole bending actuators. The beating kinematics and the coordination of multiple actuators can be dynamically reconfigured to control the strength and direction of fluid transportation. We achieve fluid transportation along and perpendicular to the beating directions of the actuator arrays, and toward or away from the substrate. The ciliated epidermises are bendable and stretchable and can be deployed on various static or dynamically deforming 3D surfaces. They enable previously difficult to obtain fluid manipulation functionalities, such as transporting fluid in tubular structures or enhancing fluid transportation near dynamically bending and expanding surfaces.

3.
Sci Robot ; 7(66): eabm6695, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35584203

ABSTRACT

Many real-world applications for robots-such as long-term aerial and underwater observation, cross-medium operations, and marine life surveys-require robots with the ability to move between the air-water boundary. Here, we describe an aerial-aquatic hitchhiking robot that is self-contained for flying, swimming, and attaching to surfaces in both air and water and that can seamlessly move between the two. We describe this robot's redundant, hydrostatically enhanced hitchhiking device, inspired by the morphology of a remora (Echeneis naucrates) disc, which works in both air and water. As with the biological remora disc, this device has separate lamellar compartments for redundant sealing, which enables the robot to achieve adhesion and hitchhike with only partial disc attachment. The self-contained, rotor-based aerial-aquatic robot, which has passively morphing propellers that unfold in the air and fold underwater, can cross the air-water boundary in 0.35 second. The robot can perform rapid attachment and detachment on challenging surfaces both in air and under water, including curved, rough, incomplete, and biofouling surfaces, and achieve long-duration adhesion with minimal oscillation. We also show that the robot can attach to and hitchhike on moving surfaces. In field tests, we show that the robot can record video in both media and move objects across the air/water boundary in a mountain stream and the ocean. We envision that this study can pave the way for future robots with autonomous biological detection, monitoring, and tracking capabilities in a wide variety of aerial-aquatic environments.


Subject(s)
Perciformes , Robotics , Animals , Fishes , Swimming , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...