Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(5): 7023-7029, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36700926

ABSTRACT

Hybrid biological robots (biobots) prepared from living cells are at the forefront of micro-/nanomotor research due to their biocompatibility and versatility toward multiple applications. However, their precise maneuverability is essential for practical applications. Magnetotactic bacteria are hybrid biobots that produce magnetosome magnetite crystals, which are more stable than synthesized magnetite and can orient along the direction of earth's magnetic field. Herein, we used Magnetospirillum magneticum strain AMB-1 (M. magneticum AMB-1) for the effective removal of chlorpyrifos (an organophosphate pesticide) in various aqueous solutions by naturally binding with organic matter. Precision control of M. magneticum AMB-1 was achieved by applying a magnetic field. Under a programed clockwise magnetic field, M. magneticum AMB-1 exhibit swarm behavior and move in a circular direction. Consequently, we foresee that M. magneticum AMB-1 can be applied in various environments to remove and retrieve pollutants by directional control magnetic actuation.


Subject(s)
Ferrosoferric Oxide , Magnetospirillum , Bacteria/metabolism , Bacterial Proteins/metabolism , Decontamination , Magnetospirillum/metabolism , Robotics/methods
2.
Indian J Microbiol ; 60(2): 251-253, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32255858

ABSTRACT

It is very important to rapidly detect the contamination of Enterococcus faecalis in fermented foods such as Korean Kimchi to maintain its freshness since Kimchi is exported to all over the world. However, gene sequence of E. faecalis is very similar among various Lactobacillus. So, there have been difficulties in its screening. We have designed primers based on Bile salt hydrolase gene of E. faecalis and applied them to PCR test. PCR band was identified only from E. faecalis and only from the mixture contaminated with E. faecalis. It means that the primers we designed are highly specific for distinguishing contamination of E. faecalis. It will be possible to precisely screen within 1 h, which will greatly contribute to the prevention of food poisoning and quick quarantine.

3.
Biomater Res ; 23: 23, 2019.
Article in English | MEDLINE | ID: mdl-31798945

ABSTRACT

BACKGROUND: Two-dimensional black phosphorus nanosheets (BPNSs) have recently emerged as a successive novel nanomaterial owing to their uniqueness in optical and electrical properties. Although BPNSs have found a wide range of biomedical applications, their biosafety is still a major concern to be addressed. METHODS: In this study, we have prepared layered BPNSs using liquid exfoliation procedure, and evaluated their physicochemical properties using Fourier Transform-infrared (FTIR) spectroscopy, Raman spectroscopy, atomic force microscopy, and Zetasizer analyses. We have investigated potential cytotoxicity of BPNSs against three different types of fibroblast cells, i.e. mouse embryonic fibroblast (NIH3T3), primary cultured normal human dermal fibroblast (nHDF), and fibrosarcoma (HT1080). Cell counting kit-8 (CCK-8) assay was carried out to assess cellular metabolic activity in cells whereas lactate dehydrogenase (LDH) activity assay was helpful to study plasma membrane integrity. RESULTS: Our salient research findings showed that BPNSs were polydispersed in solution due to aggregation. Toxic response of BPNSs against fibroblast cells was in the order, HT1080>nHDF>NIH3T3. The nanosheets reduced the number of cancerous cells with significant difference to normal cells. CONCLUSIONS: We suggest that BPNSs can be considered for cancer treatment as they destroy cancerous cells effectively. However, a comprehensive study is required to elucidate other biological effects of BPNSs.

4.
Nanomaterials (Basel) ; 9(9)2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31466309

ABSTRACT

The zero (0-D) and one-dimensional (1-D) carbon nanomaterials have gained attention among researchers because they exhibit a larger surface area to volume ratio, and a smaller size. Furthermore, carbon is ubiquitously present in all living organisms. However, toxicity is a major concern while utilizing carbon nanomaterials for biomedical applications such as drug delivery, biosensing, and tissue regeneration. In the present review, we have summarized some of the recent findings of cellular and animal level toxicity studies of 0-D (carbon quantum dot, graphene quantum dot, nanodiamond, and carbon black) and 1-D (single-walled and multi-walled carbon nanotubes) carbon nanomaterials. The in vitro toxicity of carbon nanomaterials was exemplified in normal and cancer cell lines including fibroblasts, osteoblasts, macrophages, epithelial and endothelial cells of different sources. Similarly, the in vivo studies were illustrated in several animal species such as rats, mice, zebrafish, planktons and, guinea pigs, at various concentrations, route of administrations and exposure of nanoparticles. In addition, we have described the unique properties and commercial usage, as well as the similarities and differences among the nanoparticles. The aim of the current review is not only to signify the importance of studying the toxicity of 0-D and 1-D carbon nanomaterials, but also to emphasize the perspectives, future challenges and possible directions in the field.

5.
Antioxidants (Basel) ; 8(8)2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31416178

ABSTRACT

A polyphenolic extract from melon (Cucumis melo L.), as a potential source of natural antioxidants, has been reported to have a positive effect on osteoblast activity. In this study, the protective effects of heat-treated melon extract (ECO-A) on bone strength, mineralization, and metabolism were examined in osteoporotic rat models. Osteoporosis was induced by ovariectomy (OVX) in female rats and then maintained for 8 weeks, along with the ingestion of phosphate-buffered saline (PBS, OVXP) or ECO-A (OVXE) for an additional 4 weeks. At a pre-determined timepoint, bone strengths, as well as bone mineral contents (BMC) and the density (BMD) of femurs and/or lumbar spines extracted from each animal, were measured by a mechanical test and dual-energy X-ray absorptiometry, respectively. Moreover, several biochemical markers for bone turnover were analyzed by respective colorimetric assay kits in addition to clinical analyses. The maximum load and stiffness of femurs from the OVXE group were found to be significantly higher than the other groups. Furthermore, the OVXE group showed significantly higher BMC, BMD, and bone volume than the OVX and OVXP groups, which were comparable to the non-OVX (sham) group. The levels of bone formation and resorption markers in the OVXE group were similar to the sham group, but significantly different from other groups. In conclusion, these results suggest that ECO-A can play potentially positive roles in the protection of bone loss in rats with OVX-induced osteoporosis.

6.
Nanomaterials (Basel) ; 9(7)2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31311134

ABSTRACT

Owing to the astonishing properties of non-harmful viruses, tissue regeneration using virus-based biomimetic materials has been an emerging trend recently. The selective peptide expression and enrichment of the desired peptide on the surface, monodispersion, self-assembly, and ease of genetic and chemical modification properties have allowed viruses to take a long stride in biomedical applications. Researchers have published many reviews so far describing unusual properties of virus-based nanoparticles, phage display, modification, and possible biomedical applications, including biosensors, bioimaging, tissue regeneration, and drug delivery, however the integration of the virus into different biomaterials for the application of tissue regeneration is not yet discussed in detail. This review will focus on various morphologies of virus-incorporated biomimetic nanocomposites in tissue regeneration and highlight the progress, challenges, and future directions in this area.

7.
Adv Exp Med Biol ; 1064: 73-89, 2018.
Article in English | MEDLINE | ID: mdl-30471027

ABSTRACT

Graphene is a two-dimensional atomic layer of graphite, where carbon atoms are assembled in a honeycombed lattice structure. Recently, graphene family nanomaterials, including pristine graphene, graphene oxide and reduced graphene oxide, have increasingly attracted a great deal of interest from researchers in a variety of science, engineering and industrial fields because of their unique structural and functional features. In particular, extensive studies have been actively conducted in the biomedical and related fields, including multidisciplinary and emerging areas, as their stimulating effects on cell behaviors have been becoming an increasing concern. Herein, we are attempting to summarize some of recent findings in the fields of tissue regeneration concerning the graphene family nanomaterial-functionalized biomimetic scaffolds, and to provide the promising perspectives for the possible applications of graphene family nanomaterial.


Subject(s)
Biomimetic Materials , Graphite/chemistry , Nanostructures , Tissue Engineering , Tissue Scaffolds , Oxides , Regeneration
8.
Biomater Res ; 22: 31, 2018.
Article in English | MEDLINE | ID: mdl-30305920

ABSTRACT

BACKGROUND: Black phosphorus (BP) has emerged as a novel class of nanomaterials owing to its unique optical and electronic properties. BP, a two-dimensional (2D) nanomaterial, is a structure where phosphorenes are stacked together in layers by van der Waals interactions. However, although BP nanodots have many advantages, their biosafety and biological effect have not yet been elucidated as compared to the other nanomaterials. Therefore, it is particularly important to assess the cytotoxicity of BP nanodots for exploring their potentials as novel biomaterials. METHODS: BP nanodots were prepared by exfoliation with a modified ultrasonication-assisted solution method. The physicochemical properties of BP nanodots were characterized by transmission electron microscopy, dynamic light scattering, Raman spectroscopy, and X-ray diffractometry. In addition, the cytotoxicity of BP nanodots against C2C12 myoblasts was evaluated. Moreover, their cell imaging potential was investigated. RESULTS: Herein, we concentrated on evaluating the cytotoxicity of BP nanodots and investigating their cell imaging potential. It was revealed that the BP nanodots were cytocompatible at a low concentration, although the cell viability was decreased with increasing BP nanodot concentration. Furthermore, our results demonstrated that the cells took up the BP nanodots, and the BP nanodots exhibited green fluorescence. CONCLUSIONS: In conclusion, our findings suggest that the BP nanodots have suitable biocompatibility, and are promising candidates as fluorescence probes for biomedical imaging applications.

9.
Adv Exp Med Biol ; 1078: 103-117, 2018.
Article in English | MEDLINE | ID: mdl-30357620

ABSTRACT

Tissues are often damaged by physical trauma, infection or tumors. A slight injury heals naturally through the normal healing process, while severe injury causes serious health implications. Therefore, many efforts have been devoted to treat and repair various tissue defects. Recently, tissue engineering approaches have attracted a rapidly growing interest in biomedical fields to promote and enhance healing and regeneration of large-scale tissue defects. On the other hand, with the recent advances in nanoscience and nanotechnology, various nanomaterials have been suggested as novel biomaterials. Graphene, a two-dimensional atomic layer of graphite, and its derivatives have recently been found to possess promoting effects on various types of cells. In addition, their unique properties, such as outstanding mechanical and biological properties, allow them to be a promising option for hard tissue regeneration. Herein, we summarized recent research advances in graphene-based nanocomposites for hard tissue regeneration, and highlighted their promising potentials in biomedical and tissue engineering.


Subject(s)
Bone Regeneration , Graphite , Nanocomposites , Tissue Engineering , Biocompatible Materials , Humans , Nanotechnology
10.
Nanomaterials (Basel) ; 8(6)2018 Jun 06.
Article in English | MEDLINE | ID: mdl-29882820

ABSTRACT

Black phosphorus (BP) is a monolayer/multilayer two-dimensional (2D) nanomaterial, which has recently emerged as one of the most attractive 2D nanomaterials due to its fascinating physicochemical and optoelectronical properties. Layered BP may have promising applications in biomedical fields, such as drug delivery, photodynamic/photothermal therapy and bioimaging, although its intrinsic toxicity has not been fully elucidated yet. In the present study, the cytotoxicological effects of layered BP on both cell metabolic activity and membrane integrity were investigated. Layered BPs were prepared using a modified ultrasonication-assisted solution method, and their physicochemical properties were characterized. The dose- and time-dependent cytotoxicity of layered BP was assessed against L-929 fibroblasts. Our findings indicate that the cytotoxicity of BPs is proportionally dependent on their concentration and exposure time, which is affected by the oxidative stress-mediated enzyme activity reduction and membrane disruption. On the other hand, layered BPs did not exhibit significant cytotoxicity at concentrations lower than 4 µg/mL. Therefore, it is suggested that layered BPs can be effectively utilized as therapeutic delivery carriers and imaging agents.

11.
Sci Rep ; 8(1): 5570, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29615798

ABSTRACT

Neural tissue regeneration is a significant challenge, because severe nerve injury is quite difficult to regenerate spontaneously. Although, many studies have been devoted to promote nerve regeneration, there are still many technical challenges to achieve satisfactory results. In this study, we designed biomimetic matrices composed of aligned laminin core-polydioxanone/collagen shell (Lam-PDO/Col) fibers, which can provide both topographical and biochemical cues for promoting neuritogenesis. The aligned Lam-PDO/Col core-shell fiber matrices were fabricated by magnetic field-assisted electrospinning with the coaxial system, and their potential as biofunctional scaffolds for promoting neuritogenesis was explored. It was demonstrated that the aligned Lam-PDO/Col core-shell fibers were successfully fabricated, and the laminin in the core of fibers was steadily and continuously released from fibers. In addition, the cellular behaviors of hippocampal neuronal cells on the matrices were significantly enhanced. Moreover, the aligned Lam-PDO/Col fiber matrices effectively improved and guided neurite outgrowth as well as the neurogenic differentiation by providing both topographical and biochemical cues through aligned fiber structure and sustained release of laminin. Collectively, it is suggested that the aligned Lam-PDO/Col core-shell fiber matrices are one of the most promising approaches for promoting neuritogenesis and neural tissue regeneration.


Subject(s)
Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Collagen/chemistry , Guided Tissue Regeneration/methods , Laminin/chemistry , Neurites/drug effects , Polydioxanone/chemistry , Cell Line , Humans , Neurites/metabolism
12.
Nanotheranostics ; 2(2): 144-156, 2018.
Article in English | MEDLINE | ID: mdl-29577018

ABSTRACT

Recently, there have been tremendous efforts to develop the biofunctional scaffolds by incorporating various biochemical factors. In the present study, we fabricated poly(lactic-co-glycolic acid) (PLGA) nanofiber sheets decorated with graphene oxide (GO) and RGD peptide. The decoration of GO and RGD peptide was readily achieved by using RGD peptide-displaying M13 bacteriophage (RGD-M13 phage) and electrospinning. Furthermore, the aligned GO-decorated PLGA/RGD peptide (GO-PLGA/RGD) ternary nanofiber sheets were prepared by magnetic field-assisted electrospinning, and their potentials as bifunctional scaffolds for facilitating myogenesis were explored. We characterized the physicochemical and mechanical properties of the sheets by scanning electron microscopy, Raman spectroscopy, contact angle measurement, and tensile test. In addition, the C2C12 skeletal myoblasts were cultured on the aligned GO-PLGA/RGD nanofiber sheets, and their cellular behaviors, including initial attachment, proliferation and myogenic differentiation, were evaluated. Our results revealed that the GO-PLGA/RGD nanofiber sheets had suitable physicochemical and mechanical properties for supporting cell growth, and could significantly promote the spontaneous myogenic differentiation of C2C12 skeletal myoblasts. Moreover, it was revealed that the myogenic differentiation was further accelerated on the aligned GO-PLGA/RGD nanofiber sheets due to the synergistic effects of RGD peptide, GO and aligned nanofiber structure. Therefore, , it is suggested that the aligned GO-PLGA/RGD ternary nanofiber sheets are one of the most promising approaches for facilitating myogenesis and promoting skeletal tissue regeneration.

13.
Nanomaterials (Basel) ; 7(11)2017 Nov 04.
Article in English | MEDLINE | ID: mdl-29113052

ABSTRACT

Because of recent research advances in nanoscience and nanotechnology, there has been a growing interest in functional nanomaterials for biomedical applications, such as tissue engineering scaffolds, biosensors, bioimaging agents and drug delivery carriers. Among a great number of promising candidates, graphene and its derivatives-including graphene oxide and reduced graphene oxide-have particularly attracted plenty of attention from researchers as novel nanobiomaterials. Graphene and its derivatives, two-dimensional nanomaterials, have been found to have outstanding biocompatibility and biofunctionality as well as exceptional mechanical strength, electrical conductivity and thermal stability. Therefore, tremendous studies have been devoted to employ functional graphene nanomaterials in biomedical applications. Herein, we focus on the biological potentials of functional graphene nanomaterials and summarize some of major literature concerning the multifaceted biomedical applications of functional graphene nanomaterials to coated substrates, patterned arrays and hybrid scaffolds that have been reported in recent years.

14.
Nanomaterials (Basel) ; 7(8)2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28783114

ABSTRACT

In recent years, paramagnetic nanoparticles (NPs) have been widely used for magnetic resonance imaging (MRI). This paper reports the fabrication and toxicity evaluation of polyethylene glycol (PEG)-functionalized holmium oxide (Ho2O3) NPs for potential T2-weighted MRI applications. Various characterization techniques were used to examine the morphology, structure and chemical properties of the prepared PEG-Ho2O3 NPs. MRI relaxivity measurements revealed that PEG-Ho2O3 NPs could generate a strong negative contrast in T2-weighted MRI. The pilot cytotoxicity experiments showed that the prepared PEG-Ho2O3 NPs are biocompatible at concentrations less than 16 µg/mL. Overall, the prepared PEG-Ho2O3 NPs have potential applications for T2-weighted MRI imaging.

15.
Regen Biomater ; 4(3): 159-166, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28740639

ABSTRACT

In recent years, much research has been suggested and examined for the development of tissue engineering scaffolds to promote cellular behaviors. In our study, RGD peptide and graphene oxide (GO) co-functionalized poly(lactide-co-glycolide, PLGA) (RGD-GO-PLGA) nanofiber mats were fabricated via electrospinning, and their physicochemical and thermal properties were characterized to explore their potential as biofunctional scaffolds for vascular tissue engineering. Scanning electron microscopy images revealed that the RGD-GO-PLGA nanofiber mats were readily fabricated and composed of random-oriented electrospun nanofibers with average diameter of 558 nm. The successful co-functionalization of RGD peptide and GO into the PLGA nanofibers was confirmed by Fourier-transform infrared spectroscopic analysis. Moreover, the surface hydrophilicity of the nanofiber mats was markedly increased by co-functionalizing with RGD peptide and GO. It was found that the mats were thermally stable under the cell culture condition. Furthermore, the initial attachment and proliferation of primarily cultured vascular smooth muscle cells (VSMCs) on the RGD-GO-PLGA nanofiber mats were evaluated. It was revealed that the RGD-GO-PLGA nanofiber mats can effectively promote the growth of VSMCs. In conclusion, our findings suggest that the RGD-GO-PLGA nanofiber mats can be promising candidates for tissue engineering scaffolds effective for the regeneration of vascular smooth muscle.

16.
Sci Rep ; 6: 29352, 2016 07 11.
Article in English | MEDLINE | ID: mdl-27404390

ABSTRACT

Alcohol consumption is one of the major causes of hepatic steatosis, fibrosis, cirrhosis, and superimposed hepatocellular carcinoma. Ethanol metabolism alters the NAD(+)/NADH ratio, thereby suppressing the activity of sirtuin family proteins, which may affect lipid metabolism in liver cells. However, it is not clear how long-term ingestion of ethanol eventually causes lipid accumulation in liver. Here, we demonstrate that chronic ethanol ingestion activates peroxisome proliferator-activated receptor γ (PPARγ) and its target gene, monoacylglycerol O-acyltransferase 1 (MGAT1). During ethanol metabolism, a low NAD(+)/NADH ratio repressed NAD-dependent deacetylase sirtuin 1 (SIRT1) activity, concomitantly resulting in increased acetylated PPARγ with high transcriptional activity. Accordingly, SIRT1 transgenic mice exhibited a low level of acetylated PPARγ and were protected from hepatic steatosis driven by alcohol or PPARγ2 overexpression, suggesting that ethanol metabolism causes lipid accumulation through activation of PPARγ through acetylation. Among the genes induced by PPARγ upon alcohol consumption, MGAT1 has been shown to be involved in triglyceride synthesis. Thus, we tested the effect of MGAT1 knockdown in mice following ethanol consumption, and found a significant reduction in alcohol-induced hepatic lipid accumulation. These results suggest that MGAT1 may afford a promising approach to the treatment of fatty liver disease.


Subject(s)
Acyltransferases/metabolism , Fatty Liver, Alcoholic/therapy , PPAR gamma/metabolism , Acyltransferases/genetics , Animals , Ethanol/metabolism , Fatty Liver, Alcoholic/etiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , NAD/metabolism , Real-Time Polymerase Chain Reaction , Sirtuin 1/genetics , Sirtuin 1/metabolism
17.
Sci Rep ; 6: 28648, 2016 06 27.
Article in English | MEDLINE | ID: mdl-27345868

ABSTRACT

Glucocorticoids are associated with obesity, but the underlying mechanism by which they function remains poorly understood. Previously, we showed that small G protein Dexras1 is expressed by glucocorticoids and leads to adipocyte differentiation. In this study, we explored the mechanism by which Dexras1 mediates adipogenesis and show a link to the insulin-like growth factor-1 (IGF-1) signaling pathway. Without Dexras1, the activation of MAPK and subsequent phosphorylation of CCAAT/enhancer binding protein ß (C/EBPß) is abolished, thereby inhibiting mitotic clonal expansion and further adipocyte differentiation. Dexras1 translocates to the plasma membrane upon insulin or IGF-1 treatment, for which the unique C-terminal domain (amino acids 223-276) is essential. Dexras1-dependent MAPK activation is selectively involved in the IGF-1 signaling, because another Ras protein, H-ras localized to the plasma membrane independently of insulin treatment. Moreover, neither epidermal growth factor nor other cell types shows Dexras1-dependent MAPK activation, indicating the importance of Dexras1 in IGF-1 signaling in adipogenesis. Dexras1 interacts with Shc and Raf, indicating that Dexras1-induced activation of MAPK is largely dependent on the Shc-Grb2-Raf complex. These results suggest that Dexras1 is a critical mediator of the IGF-1 signal to activate MAPK, linking glucocorticoid signaling to IGF-1 signaling in adipogenesis.


Subject(s)
Adipocytes/metabolism , Adipogenesis , Cell Membrane/metabolism , Glucocorticoids/metabolism , Insulin-Like Growth Factor I/metabolism , MAP Kinase Signaling System , ras Proteins/metabolism , 3T3-L1 Cells , Animals , Cell Membrane/genetics , Glucocorticoids/genetics , Insulin-Like Growth Factor I/genetics , Male , Mice , Protein Transport , ras Proteins/genetics
18.
Acta Biomater ; 39: 25-33, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27163406

ABSTRACT

UNLABELLED: Recently, implantable neural electrodes have been developed for recording and stimulation of the nervous system. However, when the electrode is implanted onto the nerve trunk, the rigid polyimide has a risk of damaging the nerve and can also cause inflammation due to a mechanical mismatch between the stiff polyimide and the soft biological tissue. These processes can interrupt the transmission of nerve signaling. In this paper, we have developed a nerve electrode coated with PEG hydrogel that contains poly(lactic-co-glycolic) acid (PLGA) microspheres (MS) loaded with anti-inflammatory cyclosporin A (CsA). Micro-wells were introduced onto the electrode in order to increase their surface area. This allows for loading a high-dose of the drug. Additionally, chemically treating the surface with aminopropylmethacrylamide can improve the adhesive interface between the electrode and the hydrogel. The surface of the micro-well cuff electrode (MCE) coated with polyethylene glycol (PEG) hydrogel and drug loaded PLGA microspheres (MS) were characterized by SEM and optical microscopy. Additionally, the conductive polymers, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT/PSS), were formed on the hydrogel layer for improving the nerve signal quality, and then characterized for their electrochemical properties. The loading efficiencies and release profiles were investigated by High Performance Liquid Chromatography (HPLC). The drug loaded electrode resulted in a sustained release of CsA. Moreover, the surface coated electrode with PEG hydrogel and CsA loaded MP showed a significantly decreased fibrous tissue deposition and increased axonal density in animal tests. We expect that the developed nerve electrode will minimize the tissue damage during regeneration of the nervous system. STATEMENT OF SIGNIFICANCE: The nerve electrodes are used for interfacing with the central nervous system (CNS) or with the peripheral nervous system (PNS). The interface electrodes should facilitate a closed interconnection with the nerve tissue and provide for selective stimulation and recording from multiple, independent, neurons of the neural system. In this case, an extraneural electrodes such as cuff and perineural electrodes are widely investigated because they can completely cover the nerve trunk and provide for a wide interface area. In this study, we have designed and prepared a functionalized nerve cuff electrode coated with PEG hydrogel containing Poly lactic-co-glycol acid (PLGA) microspheres (MS) loaded with cyclosporine A (CsA). To our knowledge, our findings suggest that surface coating a soft-hydrogel along with an anti-inflammatory drug loaded MS can be a useful strategy for improving the long-term biocompatibility of electrodes.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Cyclosporine/chemistry , Hydrogels/chemistry , Polyethylene Glycols/chemistry , Animals , Electric Stimulation/methods , Electrodes , Male , Rats , Rats, Sprague-Dawley
19.
BMB Rep ; 49(2): 111-5, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26350746

ABSTRACT

Caffeine has been proposed to have several beneficial effects on obesity and its related metabolic diseases; however, how caffeine affects adipocyte differentiation has not been elucidated. In this study, we demonstrated that caffeine suppressed 3T3-L1 adipocyte differentiation and inhibited the expression of CCAAT/enhancer binding protein (C/EBP)α and peroxisome proliferator-activated receptor (PPAR)γ, two main adipogenic transcription factors. Anti-adipogenic markers, such as preadipocyte secreted factor (Pref)-1 and Krüppel-like factor 2, remained to be expressed in the presence of caffeine. Furthermore, 3T3-L1 cells failed to undergo typical mitotic clonal expansion in the presence of caffeine. Investigation of hormonal signaling revealed that caffeine inhibited the activation of AKT and glycogen synthase kinase (GSK) 3 in a dose-dependent manner, but not extracellular signal-regulated kinase (ERK). Our data show that caffeine is an anti-adipogenic bioactive compound involved in the modulation of mitotic clonal expansion during adipocyte differentiation through the AKT/GSK3 pathway. [BMB Reports 2016; 49(2): 111-115].


Subject(s)
Adipocytes/metabolism , Adipogenesis/drug effects , Caffeine/pharmacology , Glycogen Synthase Kinase 3/metabolism , Mitosis/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/drug effects , Animals , Cell Differentiation/drug effects , Cell Differentiation/genetics , Clone Cells , Gene Expression Regulation/drug effects , Glycogen Synthase Kinase 3 beta , Mice
20.
Diabetologia ; 58(10): 2361-70, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26152662

ABSTRACT

AIM/HYPOTHESIS: Obesity-induced inflammation plays an important role in the development of insulin resistance and type 2 diabetes. Recent studies have demonstrated that adiposity can be improved by ablating certain inflammatory signalling pathways. Although the IL-7 receptor (IL-7R) is mostly known as a key regulator of T lymphocyte development and homeostasis, its role in obesity and metabolic diseases is unknown. Because IL-7 is markedly increased in the serum of obese individuals and IL-7R (also known as IL7R) is overexpressed in white adipose tissue (WAT) in obesity, we studied the metabolic consequences of genetic Il-7r ablation in mice. METHODS: Age-matched Il-7r-deficient (Il-7r KO) and wild-type (WT) littermates were fed a standard chow or high-fat diet (HFD) for 14 weeks. Their serum metabolic variables were measured. The expression of genes and proteins related to insulin resistance and inflammation was evaluated in WAT. RESULTS: We demonstrated that Il-7r KO mice exhibited significantly reduced body weight gain and visceral adiposity compared with WT controls on both chow and HFD. The expression of signalling molecules involved in adipogenesis was reduced in the WAT of Il-7r KO mice. We also found that Il-7r KO mice had significantly enhanced glucose homeostasis and insulin sensitivity. Consistent with an improved metabolic phenotype, proinflammatory cytokine production and macrophage infiltration was attenuated in the WAT of Il-7r KO mice. CONCLUSIONS/INTERPRETATION: The IL-7R plays an important role in the induction of HFD-induced adipogenesis and insulin resistance in mice.


Subject(s)
Adipogenesis/genetics , Adiposity/genetics , Insulin Resistance/genetics , Obesity/genetics , Receptors, Interleukin-7/genetics , Adipose Tissue/metabolism , Animals , Diet, High-Fat , Inflammation/metabolism , Mice , Mice, Knockout , Obesity/metabolism , Receptors, Interleukin-7/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...