Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Front Vet Sci ; 10: 1257573, 2023.
Article in English | MEDLINE | ID: mdl-37915946

ABSTRACT

Porcine enteric diseases including swine dysentery involves a wide range of possible aetiologies and seriously damages the intestine of pigs of all ages. Metagenomic next-generation sequencing is commonly used in research for detecting and analyzing pathogens. In this study, the feces of pigs from a commercial swine farm with dysentery-like diarrhea was collected and used for microbiota analysis by next-generation sequencing. While Brachyspira spp. was not detected in diarrheal pig fecal samples, indicating that the disease was not swine dysentery. The quantity of microbial population was extremely lowered, and the bacterial composition was altered with a reduction in the relative abundance of the probiotics organisms, Firmicutes and Bacteroidetes, with an increase in pathogens like Fusobacterium and Proteobacteria, in which the specific bacteria were identified at species-level. Viral pathogens, porcine circovirus type 2, porcine lymphotropic herpesviruses 1, and porcine mastadenovirus A were also detected at pretty low levels. Carbohydrate-active enzymes (CAZy) analysis indicated that the constitute of Firmicutes and Bacteroidete were also changed. Further, the Kyoto Encyclopedia of Genes and Genomes (KEGG) alignment analysis indicated that the microbiota of diarrheal pigs had a lower ability in utilizing energy sources but were enriched in multi-drug resistance pathways. Comprehensive Antibiotic Resistance Database (CARD) and Virulence Factors of Pathogenic Bacteria (VFDB) analysis indicated that genes for elfamycin and sulfonamide resistance and the iron uptake system were enriched in diarrheal pigs. This revealed potential bacterial infection and can guide antibiotic selection for treating dysentery. Overall, our data suggested that alterations in both the population and functional attributes of microbiota in diarrheal pigs with decreased probiotic and increased pathogenic microorganisms. These results will help elucidate the mechanism of dysentery-like diarrhea and the development of approaches to control the disease.

2.
World J Gastrointest Endosc ; 15(9): 564-573, 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37744321

ABSTRACT

BACKGROUND: We invented Endoscopic Ruler, a new endoscopic device to measure the size of varices in patients with cirrhosis and portal hypertension. AIM: To assess the feasibility and safety of Endoscopic Ruler, and evaluate the agreement on identifying large oesophageal varices (OV) between Endoscopic Ruler and the endoscopists, as well as the interobserver agreement on diagnosing large OV using Endoscopic Ruler. METHODS: We prospectively and consecutively enrolled patients with cirrhosis from 11 hospitals, all of whom got esophagogastroduodenoscopy (EGD) with Endoscopic Ruler. The primary study outcome was a successful measurement of the size of varices using Endoscopic Ruler. The secondary outcomes included adverse events, operation time, the agreement of identifying large OV between the objective measurement of Endoscopic Ruler and the empirical reading of endoscopists, together with the interobserver agreement on diagnosing large OV by Endoscopic Ruler. RESULTS: From November 2020 to April 2022, a total of 120 eligible patients with cirrhosis were recruited and all of them underwent EGD examinations with Endoscopic Ruler successfully without any adverse event. The median operation time of Endoscopic Ruler was 3.00 min [interquartile range (IQR): 3.00 min]. The kappa value between Endoscopic Ruler and the endoscopists while detecting large OV was 0.52, demonstrating a moderate agreement. The kappa value for diagnosing large OV using Endoscopic Ruler among the six independent observers was 0.77, demonstrating a substantial agreement. CONCLUSION: The data demonstrates that Endoscopic Ruler is feasible and safe for measuring the size of varices in patients with cirrhosis and portal hypertension. Endoscopic Ruler is potential to promote the clinical practice of the two-grade classification system of OV.

3.
Mol Cell Probes ; 68: 101899, 2023 04.
Article in English | MEDLINE | ID: mdl-36775106

ABSTRACT

This study is to investigate the effects of dexmedetomidine on myocardial ischemia-reperfusion (I/R) injury and its molecular mechanisms. H9c2 cell injury model was constructed by the hypoxia/normoxia (H/R) conditions. Besides, cAMP response element-binding protein (CREB) overexpression and knockdown cell lines were constructed. Cell viability was determined by cell-counting kit 8. Biochemical assays were used to detect oxidative stress-related biomarkers, cell apoptosis, and ferroptosis-related markers. Our results showed that dexmedetomidine's protective effects on H/R-induced cell damage were reversed by the inhibition of protein kinase A (PKA), CREB, and extracellular signal regulated kinase 1/2 (ERK1/2). Treatment of dexmedetomidine ameliorated oxidative stress in the cardiomyocytes induced by H/R, whereas inhibition of PKA, CREB, or ERK1/2 reversed these protective effects. Cell death including cell necrosis, apoptosis, and ferroptosis was found in the cells under H/R insult. Interestingly, targeting CREB ameliorated ferroptosis and oxidative stress in these cells. In conclusion, dexmedetomidine attenuates myocardial I/R injury by suppressing ferroptosis through the cAMP/PKA/CREB signaling pathway.


Subject(s)
Dexmedetomidine , Ferroptosis , Myocardial Reperfusion Injury , Humans , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Dexmedetomidine/pharmacology , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP Response Element-Binding Protein/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/pharmacology , Apoptosis
4.
Immunopharmacol Immunotoxicol ; 45(2): 153-159, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36073191

ABSTRACT

BACKGROUND: Anesthetics are emerging regulators of cancer progression. Here we aim to explore the immunomodulatory roles of two common anesthetics, propofol and sevoflurane in breast cancer progression. METHODS: On murine 4T1 breast cancer models, we isolated immune cells from peripheral blood after treatment with propofol and sevoflurane during tumor resection. The CD3, CD4, and CD8 expression of these immune cells were compared using flow cytometry to determine which immune cells were prominently affected by propofol and sevoflurane. Serum cytokine levels were determined using enzyme-linked immunosorbent assay (ELISA). Metastases in lung and liver tissues were counted. In MDA-MB-231 tumor models, the cell count of immune cells was determined. The cytotoxicity of T cells and natural killing cells in co-culture after propofol and sevoflurane treatment were determined using the LDH assay. RESULTS: In the 4T1 breast cancer model, T-lymphocytes showed significant cell count reduction. TNF-α was significantly upregulated at 3 and 24 h after treatment, while IL-2 and IFN-γ showed transient upregulation at 3 h after treatment. Propofol and sevoflurane increased the number of metastases in the lung and liver after primary tumor resection. In the MDA-MB-231 tumor model, CD3 and CD4 cells were also prominently reduced by propofol and sevoflurane treatment. In vitro, the proliferation and cell-killing activity of T cells and NK cells were also attenuated. CONCLUSIONS: Propofol and sevoflurane had significant effects in modulating cancer progression through their immunosuppressive role. The proliferation and killing activity of anti-tumor immune cells can be suppressed by propofol and sevoflurane.


Subject(s)
Breast Neoplasms , Methyl Ethers , Propofol , Humans , Mice , Animals , Female , Propofol/pharmacology , Sevoflurane/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Disease Models, Animal
5.
Neurochem Res ; 48(2): 393-403, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36222956

ABSTRACT

Postoperative neurocognitive impairment (POCD) is a common complication after surgery and anesthesia, especially in elderly patients. Avenanthramide-C (AVC) test is a vascular endothelial cell adhesion molecule inhibitor with strong anti-inflammatory and antioxidant effects. The aim of this study was to investigate the effect and mechanism of AVC on POCD in aged rats to clarify the effect of AVC on POCD in aged rats. The aging rat model was established by continuous 200 mg/kg propofol anesthesia. Repeated propofol anesthesia could severely impair spatial learning ability, memory and cognitive function, and could promote hippocampal apoptosis, oxidative stress injury, neuroinflammation and ferroptosis in aging rats. In addition, AVC not only improved cognitive dysfunction, but also significantly inhibited apoptosis, neuroinflammatory response, ferroptosis and oxidative stress level in the hippocampus of aging rats induced by repeated anesthesia. Further mechanistic studies manifested that the above protective effects of AVC on aging rats induced by repeated propofol anesthesia may be achieved by activating Nrf2/ARE pathway activity. AVC pretreatment has a preventive effect on cognitive dysfunction induced by repeated propofol anesthesia in aging rats, and the preventive effect of AVC may be realized by activating the Nrf2/ARE signaling pathway activity. Our results demonstrate that AVC preconditioning reduces postoperative neuronal loss and neuroinflammation, activates the Nrf2/ARE pathway, reduces oxidative stress injury, and improves POCD in aged rats.


Subject(s)
Cognitive Dysfunction , Ferroptosis , Propofol , Rats , Animals , Propofol/pharmacology , NF-E2-Related Factor 2/metabolism , Neuroinflammatory Diseases , Cognitive Dysfunction/metabolism , Aging , Hippocampus/metabolism
6.
J Fish Biol ; 102(1): 141-154, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36222316

ABSTRACT

Eels are important aquaculture species for which an increasing number of reference genes are being identified and applied. In this study, five housekeeping genes [RPL7 (ribosomal protein L7), 18 S (18 S ribosomal RNA), EF1A (elongation factor 1α), ACTB (ß-actin) and GAPDH (glyceraldehyde-3-phosphate dehydrogenase)] were chosen to evaluate their reliability as reference genes for quantitative real-time PCR (qPCR) for the study of Anguilla anguilla. The expression of the selected genes in different eel tissues was determined using qPCR at different growth stages or upon challenge by Anguillid herpesvirus (AngHV), and the expression levels of these genes were then compared and evaluated using the geNorm and NormFinder algorithms. Then, RefFinder was used to comprehensively rank the examined housekeeping genes. Interestingly, the expression of the evaluated housekeeping genes exhibited tissue-dependent and treatment-dependent variations. In different growth periods A. anguilla tissues, the most stable genes were the following: ACTB in mucus; 18 S in skin and kidney; RPL7 in muscle, gill, intestine and brain; EF1A in heart and liver; and GAPDH in spleen. In contrast, in AngHV-challenged A. anguilla tissues, the most stable genes were the following: 18 S in mucus; RPL7 in skin, gill, heart, spleen, kidney and intestine; EF1A in muscle and liver; and ACTB in brain. Further comparison analysis indicated that the expression of RPL7 and EF1A was stable in multiple A. anguilla tissues in different growth periods and in eels challenged by AngHV. Nonetheless, the expression level of GAPDH in eel tissues was lower, and it was unstable in several tissues. These results indicated that the selection of reference genes for qPCR analysis in A. anguilla should be made in accordance with experimental parameters, and both RPL7 and EF1A could be used as reference genes for qPCR study of A. anguilla at different growth stages or upon challenge by AngHV. The reference genes identified in this study could improve the accuracy of qPCR data and facilitate further studies aimed at understanding the biology of eels.


Subject(s)
Anguilla , Genes, Essential , Animals , Real-Time Polymerase Chain Reaction/methods , Genes, Essential/genetics , Anguilla/genetics , Reproducibility of Results , Gene Expression Profiling
7.
Antibiotics (Basel) ; 11(12)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36551460

ABSTRACT

Lysozyme is a crucial component of the host's innate immune system. Due to its natural non-toxic and harmless characteristics, lysozyme is considered to be an ideal antibiotic substitute. In this study, we analyzed the expression profiles of lysozymes from zebrafish (Danio rerio) in uninfected or V. vulnificus-infected tissues using real-time quantitative PCR (qPCR). Furthermore, lysozymes that might be involved in the defense against V. vulnificus were selected for over-expression, and the antibacterial activity of over-expressed lysozyme proteins were evaluated using V. vulnificus. The results showed that three types of zebrafish lysozyme, i.e., c-type lysozyme (DrLysC), g1-type lysozyme (DrLysG1), and g2-type lysozyme (DrLysG2), were identified, and V. vulnificus infection significantly changed the expression levels of DrLysC and DrLysG1. Then, DrLysC and DrLysG1 were over-expressed in E. coli, and the purified recombinant DrLysC (rDrLysC) showed more potent antibacterial activity against V. vulnificus. This finding lays the foundation for further application of rDrLysC to treat V. vulnificus infection.

8.
Int J Mol Sci ; 23(19)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36232585

ABSTRACT

Anguillid herpesvirus 1 (AngHV) is an important viral pathogen affecting eel. This study was designed to investigate the potential molecular mechanisms and immune response elicited at the protein levels in the skin mucus of AngHV-infected Anguilla anguilla. Tandem mass tag (TMT)-labelling proteomics with the liquid chromatography tandem mass spectrometry (LC-MS/MS) was used for performing quantitative identification of the proteins. In addition, the quantitative protein amount was detected by parallel reaction monitoring (PRM) analysis. A total of 3486 proteins were identified, of which 2935 were quantified. When a protein fold change was greater than 1.3 or less than 0.76, it indicated a differentially expressed protein (DEP). Overall, 187 up-regulated proteins and 126 down-regulated proteins were detected, and most of the DEPs were enriched in the CAMs pathway, intestinal immune pathway, herpes simplex virus 1 infection pathway, phagosome pathway and p53 signaling pathway. The results of the DEPs detected by PRM were highly consistent with the results of the TMT-labelled quantitative proteomic analysis. The findings of this study provide an important research basis for further understanding the pathogenesis of AngHV.


Subject(s)
Anguilla , Fish Diseases , Animals , Chromatography, Liquid , Herpesviridae , Mucus , Proteomics , Tandem Mass Spectrometry , Tumor Suppressor Protein p53
9.
J Fish Dis ; 44(11): 1811-1818, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34324718

ABSTRACT

Recently, the culture of American eels (Anguilla rostrate) in China has been impacted by emergence of a disease with signs of haemorrhagic gill necrosis. The gills of diseased eels are covered with petecchia and they bleed when the operculum is pressed. In this study, a novel American eel adomavirus (AEAdoV) was isolated from the diseased eels using the eel ovary cell line (EO). The virus proliferated in the EO cells with a maximum TCID50 /ml of 106.29 ± 0.23 at 6 days post-infection. The virions were non-enveloped with a diameter of 75-85 nm and shown to be a DNA virus upon 5-iodo-2'-deoxyuridine (IDU) treatment. PCR assays showed that AEAdoV encodes a superfamily 3 helicases (S3H) replicase and shared high similarities with Anguilla marmorata adomavirus (MEAdoV). Although no clinical signs or mortality was observed among the eels injected with AEAdoV, the virus was reisolated from livers, kidneys and gills of injected eels at 35 days post-injection. Our results suggested that AEAdoV exhibited a latent infection in A. rostrata. The pathogenicity of the AEAdoV needs to be confirmed further.


Subject(s)
Anguilla/virology , DNA Viruses/classification , Fish Diseases/virology , Necrosis/veterinary , Animals , Aquaculture , China , DNA Viruses/isolation & purification , DNA Viruses/pathogenicity , Gills/pathology , Gills/virology , Necrosis/virology , Phylogeny
10.
Neurochem Res ; 46(9): 2276-2284, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34081245

ABSTRACT

Diabetic neuropathy is one of the common complications of type 2 diabetes mellitus (T2DM) with severe outcomes. The mechanisms of physiopathology of diabetic neuropathy are not well elucidated. Inflammation and inflammatory macrophages are recognized to be crucial in diabetic neuropathy. Toll-like receptor 2 (TLR2) is an important factor in innate immune response which could promote the polarization of inflammatory macrophages. In present study, we evaluated the effects of a TLR2 antagonist CU-CPT22 on diabetic neuropathy. We induced T2DM in mice by feeding with high fat diet (HFD). We measured the body weight, blood glucose level, paw withdrawal threshold, inflammatory cytokine production, and macrophages infiltration in T2DM mice. We evaluated the effects of CU-CPT22 on pro-inflammatory cytokines production, macrophage marker expression in lipopolysaccharides (LPS)-treated BMDMs. We administrated CU-CPT22 in T2DM mice and measured the pro-inflammatory cytokines levels, expression of macrophages markers in sciatic nerve (SCN), and paw withdrawal threshold. T2DM mice had significantly increased body weight and blood glucose, and had significantly decreased paw withdrawal threshold. Obvious increased pro-inflammatory cytokine level and infiltration of M1 phenotype macrophages was observed in SCN from T2DM mice. CU-CPT22 prevented pro-inflammatory cytokine production in LPS-treated BMDMs and re-polarized them to M2 phenotype. CU-CPT22 suppressed the inflammation and induced M2 macrophages in SCN from T2DM mice, and ameliorated the paw withdrawal threshold in T2DM mice. CU-CPT22 ameliorates neuropathic pain in T2DM by promoting M2 phenotype macrophages.


Subject(s)
Benzocycloheptenes/therapeutic use , Diabetes Mellitus, Type 2/metabolism , Macrophages/drug effects , Neuralgia/drug therapy , Toll-Like Receptor 2/antagonists & inhibitors , Animals , Cytokines/metabolism , Diabetes Mellitus, Type 2/complications , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/etiology , Diet, High-Fat , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Male , Mice, Inbred C57BL , Neuralgia/etiology , Sciatic Nerve/metabolism
11.
Virus Genes ; 57(3): 280-283, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33929643

ABSTRACT

Anguillid herpesvirus 1 (AngHV) is one of the vital pathogenic agents found in the wild and cultured eel populations, which has brought significant losses to eel culture industry in China. In this study, AngHV ORF95 was characterized. Bioinformatics analysis showed that ORF95 putatively encodes a structural protein that is homologous to hemagglutinin-esterase (HE) protein of infectious salmon anemia virus (ISAV). Temporal transcription and expression analysis indicated that ORF95 is a viral late gene. Subcellular localization analysis revealed that ORF95 was predominantly localized in the cytoplasm. Further, western blot analysis indicated that ORF95 is a structural protein of virion envelope. These results provide a novel basis to make further efforts to clarify the function of ORF95 in the process of AngHV infection and the possibility to use ORF95 as antigen to develop AngHV subunit vaccine.


Subject(s)
Eels/virology , Hemagglutinins, Viral/genetics , Herpesviridae/genetics , Open Reading Frames/genetics , Viral Fusion Proteins/genetics , Animals , Eels/genetics , Fish Diseases/genetics , Fish Diseases/virology , Herpesviridae/isolation & purification , Herpesviridae/pathogenicity , Isavirus/genetics , Virion/genetics , Virion/pathogenicity
12.
J Mol Neurosci ; 71(5): 972-980, 2021 May.
Article in English | MEDLINE | ID: mdl-33009636

ABSTRACT

Accumulating evidence has elucidated that human mesenchymal stem cells (hMSCs) exert profound analgesic effects on numerous animal models of neuropathic pain, including drug-induced peripheral nerves, diabetes-induced neuropathy, and chronic constriction injury. We aimed to address whether forcing expression of sirtuin 1 (SIRT1) can enhance the efficacy of hMSCs on alleviation of pain sensation. A rat model of chronic constriction injury (CCI) mimicking peripheral nerve injury was incorporated in the study. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) testing were used to measure pain-related behavior. Our results demonstrated that SIRT1 was decreased post-CCI surgery. Compared to hMSCs-control implantation, the hMSCs-SIRT1 (hMSCs overexpressing SIRT1) implantation exhibited superior effects on reducing pro-inflammatory cytokine levels in serum and spinal dorsal horn, while ameliorating neuropathic pain in CCI rat. Engineering hMSCs such as overexpressing SIRT1 may serve as a promising strategy for the treatment of patients with neuropathic pain.


Subject(s)
Mesenchymal Stem Cell Transplantation/methods , Neuralgia/therapy , Sirtuin 1/metabolism , Animals , Cells, Cultured , Cytokines/metabolism , Humans , Injections, Spinal/methods , Mesenchymal Stem Cells/metabolism , Pain Threshold , Rats , Rats, Sprague-Dawley , Sirtuin 1/genetics , Spinal Cord Dorsal Horn/metabolism
13.
Int J Neurosci ; 130(12): 1215-1224, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32065547

ABSTRACT

Backgrounds: Mounting studies pay attention to the functional roles of long non-coding RNAs (lncRNAs) in many human diseases including neuropathic pain. LncRNA MALAT1 has been indicated to serve as a critical mediator in neuropathic pain with unclear mechanisms. The present study aims to explore the functional roles of MALAT1 in neuropathic pain progression and the related mechanisms.Methods: Bilateral sciatic nerves were ligated to induce chronic constriction injury (CCI) in order to establish the neuropathic pain rat model followed by behavioral tests, RT-qPCR, Western blotting, and ELISA. Dual luciferase activity assay was performed to determine the binding effect between MALAT1 or HMGB1 and miR-129-5p.Results: The mRNA levels of MALAT1 were significantly enhanced in CCI rats. MALAT1 inhibition repressed the development of neuropathic pain and neuroinflammation. Additionally, miR-129-5p was decreased and HMGB1 was increased, both of which could be rectified by MALAT1 inhibition. Meanwhile, MALAT1 targeted miR-129-5p/HMGB1 axis. Finally, miR-129-5p suppression attenuated the inhibitory effect of MALAT1 inhibition on neuropathic pain and neuroinflammation development in CCI rats.Conclusion: The present study demonstrates that MALAT1 might modulate neuropathic pain via targeting miR-129-5p/HMGB1 axis. These findings may lead to a promising and efficacious clinical approach for the treatment of neuropathic pain.


Subject(s)
HMGB1 Protein/metabolism , Inflammation/metabolism , MicroRNAs/metabolism , Neuralgia/metabolism , RNA, Long Noncoding/metabolism , Animals , Behavior, Animal/physiology , Constriction , Disease Models, Animal , Disease Progression , Gene Expression Regulation , Inflammation/prevention & control , Neuralgia/etiology , Neuralgia/prevention & control , RNA, Long Noncoding/antagonists & inhibitors , Rats , Sciatic Nerve/injuries
14.
J Mol Neurosci ; 70(1): 84-93, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31489582

ABSTRACT

Recently, microRNAs are reported to be participated in the development of pain and persistence of neuropathic and inflammatory pain in animal models. Here, we characterized the functional role of miR-129-5p in pain processing in chronic constriction injury (CCI) rat models. Bilateral CCI operation was used to generate neuropathic pain rat model. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were used to assess pain-related behaviors. Gene expression was evaluated using qRT-PCR, luciferase assay, western blotting, and enzyme-linked immunosorbent assay. Compared with the control rats, expression level of miR-129-5p was downregulated significantly over time in CCI rats post operation. Interestingly, downregulation of miR-129-5p in CCI rats was correlated with increased proinflammatory cytokine expression and pain-related behaviors. Furthermore, we found that miR-129-5p alleviated neuropathic pain through downregulating high mobility group protein B1 (HMGB1) expression in CCI rats as overexpression of miR-129-5p suppressed expression of both HMGB1 and proinflammatory cytokine and alleviated pain sensation in CCI rats. In summary, our results show that alteration in miR-129-5p expression contributes to pain processing in our CCI pain rat model, suggesting miR-129-5p could be a causal factor in neuropathic pain and serve as a promising potential biomarker and therapeutic target for neuropathic pain.


Subject(s)
HMGB1 Protein/genetics , MicroRNAs/genetics , Neuralgia/metabolism , Animals , Cells, Cultured , Down-Regulation , HEK293 Cells , HMGB1 Protein/metabolism , Humans , Male , MicroRNAs/metabolism , Neuralgia/genetics , Rats , Rats, Sprague-Dawley
15.
Sci Rep ; 9(1): 17277, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31754121

ABSTRACT

Biochar amendment is a good means of mitigating methane (CH4) and nitrous oxide (N2O) emissions. However, the effects of biochar amendment on N2O and CH4 reduction in soil under rotation with different soil moisture contents is not well understood. To understand CH4 and N2O flux from soil with biochar amendment under water-unsaturated and water-saturated conditions, a field experiment was conducted in a tobacco-rice rotation field in subtropical China to investigate N2O and CH4 emissions following soil amendment with tobacco straw biochar at rates of 0, 10, 40 and 80 t·ha-1 (B0, B10, B40 and B80, respectively). N2O and CH4 emissions were monitored by a closed-chamber method in the water-unsaturated tobacco (UT) and water-saturated rice (SR) seasons during the 2015 planting season. The soil pH increased from 5.4 in the control to 6.1 in the soil amended with biochar at 80 t·ha-1 in the UT season. During both the UT and SR seasons, with biochar amendment at 40 and 80 t·ha-1, the soil bulk density (BD) decreased, while the soil organic matter (SOM) and available potassium (Av. K) contents increased. N2O flux was significantly greater in UT than in SR in the controls but decreased with the application of biochar during both the UT and SR seasons. The cumulative CH4 emission decreased with the rate of biochar application and the methanotroph pmoA gene copy number in soils and increased with the methanogenic archaea 16Sr DNA gene copy number in soils during the rice-cropping season. These results indicated that biochar amendment could decrease methanogenic archaea and increase of methanotroph pmoA gene, which are the mechanistic origin for CH4 reduction.

16.
Synapse ; 73(10): e22117, 2019 10.
Article in English | MEDLINE | ID: mdl-31120580

ABSTRACT

Transient receptor melastatin 2 (TRPM2) is a nonselective Ca2+ -permeable cation channel highly expressed in brain and other tissues. Studies showed that TRPM2 contributed to the induction of inflammatory cytokine and chemokine of immune cells, resulted in neuropathic pain. However, how TRPM2 regulates neuropathic pain is not clear. The sciatic nerve chronic constriction injury (CCI) rat model was used to induce chronic neuropathic pain. The RNA and protein level of TRPM2 was detected with real-time PCR and western blot. SiRNA targeting TRPM2 was used to knockdown the expression of TRPM2. Reactive oxygen species (ROS) levels were determined using H2DCFDA assay and NO production was analyzed by measuring the accumulated level of its stable metabolite (nitrite). We found that CCI significantly increased TRPM2 expression in dorsal root ganglion and spinal cord. Knockdown TRPM2 in early phase after CCI alleviated injury-induced neuropathic pain. Mechanistically, we demonstrated that TRPM2 knockdown drastically inhibited the iNOS expression and NO generation, with decreased ROS generation in CCI rat. TRPM2 participates in the transformation of acute pain to chronic pain during injury-induced neuropathic pain, which might serve as a potential therapeutic target for neuropathic pain.


Subject(s)
Acute Pain/metabolism , Chronic Pain/metabolism , Neuralgia/metabolism , Peripheral Nerve Injuries/metabolism , TRPM Cation Channels/metabolism , Animals , Male , Rats , Rats, Sprague-Dawley , Sciatic Nerve/injuries
17.
Int J Neurosci ; 129(9): 896-903, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30806135

ABSTRACT

Aim: Thalidomide is one of the first line therapies in cancer pain management. Previous study has shown that thalidomide decreases the expression of tumor necrosis factor alpha in the mouse spinal cord. However, the exact cellular and molecular mechanism underlying the effect of thalidomide remains unclear. Here, we investigated the effect of thalidomide on the expression level of NF-κB as well as glial fibrillary acidic protein (GFAP) in the spinal cord astrocyte in a mice model. Materials and methods: MC57G fibrosarcoma cells were intramedullary injected into the right femurs of C57/BL mice to induce behaviors related to bone cancer pain. Postoperative thalidomide was administered intraperitoneally to the mice at dose of 100 mg/kg/day for 7 days. The effect of thalidomide on pain hypersensitivity was checked by behavioral testing. The expression levels of NF-κB and GFAP in spinal cord were evaluated by using Western blotting and Immunohistochemistry. Results: Compared with the controls, the tumor-bearing mice showed substantial pain-related behaviors. Furthermore, the expression levels of both NF-κB and GFAP increased significantly in the spinal cord astrocytes of the tumor-bearing mice. Treating the tumor-bearing mice with thalidomide results in a dramatic reduction in pain behaviors and a significant decrease of NF-κB and GFAP expressions. Conclusions: Thalidomide alleviates the pain behaviors probably by down-regulating the expression of NF-κB and GFAP.


Subject(s)
Astrocytes/drug effects , Bone Neoplasms/drug therapy , Cancer Pain/drug therapy , Glial Fibrillary Acidic Protein/antagonists & inhibitors , NF-kappa B/antagonists & inhibitors , Thalidomide/therapeutic use , Animals , Astrocytes/metabolism , Bone Neoplasms/metabolism , Cancer Pain/metabolism , Cell Line, Tumor , Disease Models, Animal , Down-Regulation/drug effects , Down-Regulation/physiology , Gene Expression , Glial Fibrillary Acidic Protein/biosynthesis , Glial Fibrillary Acidic Protein/genetics , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Male , Mice , Mice, Inbred C57BL , NF-kappa B/biosynthesis , NF-kappa B/genetics , Random Allocation
18.
J Neurosci Res ; 96(2): 273-283, 2018 02.
Article in English | MEDLINE | ID: mdl-28758232

ABSTRACT

The rostral ventromedial medulla (RVM) is highly involved in pain signal transmissions. Previous studies have shown that thalidomide is anti-nociceptive. Thus, we evaluated the neurobiological mechanisms of thalidomide in the RVM in the regulation of postoperative pain. We used a rat model of postoperative pain to investigate the effects of intra-RVM thalidomide treatments on postoperative pain, and evaluate the role of cannabinoid receptors in the effects of intra-RVM thalidomide treatments on GABAergic neurotransmission in the RVM neurons. We found intra-RVM thalidomide treatments reduced incisional surgery induced mechanical allodynia. This phenomenon was associated with attenuation of the frequency and amplitude of miniature inhibitory postsynaptic currents (mIPSCs) and spontaneous IPSCs (sIPSCs) in RVM neurons. Furthermore, applications of WIN 55,212-3 mesylate, a non-selective cannabinoid receptor antagonist reversed the effects of repeated thalidomide treatment on the frequency but not the amplitude of mIPSCs and sIPSCs. Finally, we found that repeated thalidomide treatment robustly enhanced CB2 receptor expression, but slightly reduced CB1 receptor expression, in the RVM. These results suggested that the antinociceptive effects of thalidomide in the RVM likely involve the attenuation of GABA release, which are critically regulated by cannabinoid receptors.


Subject(s)
Analgesics/therapeutic use , Medulla Oblongata/physiology , Pain, Postoperative/drug therapy , Thalidomide/therapeutic use , Animals , Disease Models, Animal , Electric Stimulation , Excitatory Amino Acid Antagonists/pharmacology , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Inhibitory Postsynaptic Potentials/drug effects , Male , Medulla Oblongata/cytology , Medulla Oblongata/drug effects , Neurons/drug effects , Pain Measurement , Pain Threshold/drug effects , Quinoxalines/pharmacology , Rats , Rats, Sprague-Dawley , Sodium Channel Blockers/pharmacology , Tetrodotoxin/pharmacology , Valine/analogs & derivatives , Valine/pharmacology
19.
Biol Chem ; 398(10): 1141-1149, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28525360

ABSTRACT

The neurobiological mechanisms of obesity-induced peripheral neuropathy are poorly understood. We evaluated the role of Sigma-1 receptor (Sig-1R) and NMDA receptor (NMDARs) in the spinal cord in peripheral neuropathy using an animal model of high fat diet-induced diabetes. We examined the expression of Sig-1R and NMDAR subunits GluN2A and GluN2B along with postsynaptic density protein 95 (PSD-95) in the spinal cord after 24-week HFD treatment in both wild-type and Sig-1R-/- mice. Finally, we examined the effects of repeated intrathecal administrations of selective Sig-1R antagonists BD1047 in HFD-fed wild-type mice on peripheral neuropathy. Wild-type mice developed tactile allodynia and thermal hypoalgesia after 24-week HFD treatment. HFD-induced peripheral neuropathy correlated with increased expression of GluN2A and GluN2B subunits of NMDARs, PDS-95, and Sig-1R, as well as increased Sig-1R-NMDAR interaction in the spinal cord. In contrast, Sig-1R-/- mice did not develop thermal hypoalgesia or tactile allodynia after 24-week HFD treatment, and the levels of GluN2A, GluN2B, and PSD-95 were not altered in the spinal cord of HFD-fed Sig-1R-/- mice. Finally, repeated intrathecal administrations of selective Sig-1R antagonists BD1047 in HFD-fed wild-type mice attenuated peripheral neuropathy. Our results suggest that obesity-associated peripheral neuropathy may involve Sig-1R-mediated enhancement of NMDAR expression in the spinal cord.


Subject(s)
Diet, High-Fat/adverse effects , Peripheral Nervous System Diseases/metabolism , Receptors, sigma/metabolism , Animals , Ethylenediamines/administration & dosage , Ethylenediamines/pharmacology , Injections, Spinal , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Peripheral Nervous System Diseases/pathology , Receptors, sigma/antagonists & inhibitors , Sigma-1 Receptor
20.
Neurochem Res ; 41(12): 3171-3180, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27573481

ABSTRACT

Opioid analgesics have less efficacy in diabetic neuropathy treatment, and tolerance often occurs after chronic usage. Given that thalidomide can potentiate the morphine efficacy in diabetic neuropathy treatment, we investigated the effects of intrathecal administrations of thalidomide on morphine tolerance during the treatment of diabetic neuropathy. We found that intrathecal administrations of thalidomide (25 mg/kg/ml) potentiated the analgesic effects of morphine on mechanical hyperalgesia and prevented the development of morphine tolerance. While this treatment regimen did not alter the protein levels of µ-opioid receptor (MOR) in the spinal cord of diabetic rats, chronic morphine treatment robustly increased MOR binding density in the synaptic plasma membranes fraction, but decreased it in the microsomal fraction. Furthermore, thalidomide was able to reverse the distribution of MOR altered by chronic morphine treatment. Finally, STZ-induced diabetes promoted PKC activation and enhanced TNFα level in the spinal cord, which were attenuated by intrathecal administrations of thalidomide. Taken together, these results suggested that thalidomide may potentiate morphine efficacy on diabetic neuropathy and prevent the development of morphine tolerance by suppressing PKC activation and TNFα level in the spinal cord.


Subject(s)
Analgesics, Opioid/pharmacology , Diabetic Neuropathies/drug therapy , Morphine/pharmacology , Thalidomide/pharmacology , Analgesics, Opioid/therapeutic use , Animals , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/complications , Diabetic Neuropathies/etiology , Diabetic Neuropathies/physiopathology , Drug Synergism , Drug Tolerance , Enzyme Activation , Hyperalgesia/drug therapy , Hyperalgesia/physiopathology , Infusions, Intravenous , Injections, Spinal , Male , Morphine/therapeutic use , Physical Stimulation , Protein Kinase C/metabolism , Rats, Sprague-Dawley , Receptors, Opioid, mu/metabolism , Spinal Cord/drug effects , Spinal Cord/metabolism , Streptozocin , Thalidomide/therapeutic use , Touch , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL