Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Opt Lett ; 49(14): 3898-3901, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008736

ABSTRACT

The recent advances in infrared laser technology are expanding the capabilities and applications of vibrational spectroscopy. A promising approach utilizing broadband infrared mode-locked lasers is background-free (BF) absorption spectroscopy. This method captures the free-induction decay (FID) of excited molecules while suppressing the background light. It is unique in that the signal strength increases with input optical power but eventually struggles with detector noise when targeting fewer molecules. In this paper, we present a novel method of multiplexed background-free spectroscopy using a spectral mask whose transmittance has a strong correlation with the absorption spectrum of a target molecule. We successfully demonstrate an order of magnitude increase in the sensitivity due to multiplexing as well as a high molecular contrast due to the spectral correlation. The presented results indicate the promising potential of the method for sensitive and selective detection of trace molecules.

2.
Micromachines (Basel) ; 14(11)2023 Nov 19.
Article in English | MEDLINE | ID: mdl-38004982

ABSTRACT

Two-dimensional (2D) materials, characterized by their atomically thin nature and exceptional properties, hold significant promise for future nano-electronic applications. The precise control of carrier density in these 2D materials is essential for enhancing performance and enabling complex device functionalities. In this study, we present an electron-beam (e-beam) doping approach to achieve controllable carrier doping effects in graphene and MoS2 field-effect transistors (FETs) by leveraging charge-trapping oxide dielectrics. By adding an atomic layer deposition (ALD)-grown Al2O3 dielectric layer on top of the SiO2/Si substrate, we demonstrate that controllable and reversible carrier doping effects can be effectively induced in graphene and MoS2 FETs through e-beam doping. This new device configuration establishes an oxide interface that enhances charge-trapping capabilities, enabling the effective induction of electron and hole doping beyond the SiO2 breakdown limit using high-energy e-beam irradiation. Importantly, these high doping effects exhibit non-volatility and robust stability in both vacuum and air environments for graphene FET devices. This methodology enhances carrier modulation capabilities in 2D materials and holds great potential for advancing the development of scalable 2D nano-devices.

3.
Opt Lett ; 48(16): 4257-4260, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37582006

ABSTRACT

This Letter presents a dispersion spectroscopy method that achieves simultaneous detection of molecular vibrational dispersion over a broad spectral range. The method is implemented with an infrared mode-locked laser, a dispersion-compensated Michelson interferometer, and a multichannel detector. Synchronous detection under interferometric phase modulation near the destructive interference condition is employed to achieve a high signal-to-noise ratio. We successfully demonstrate the method by measuring the dispersion of carbon monoxide gas, achieving a noise-equivalent dispersion of 1.3 × 10-8 cm and a corresponding noise-equivalent absorbance of 6.5 × 10-4 with a measurement time of 2.2 s.

4.
Plants (Basel) ; 12(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37447022

ABSTRACT

Paeonia ostii is an important woody oil crop mainly cross-pollinated. However, the low yield has become an important factor restricting the industrial development of P. ostii. Cross-pollination has become one of the important measures to increase the seed yield. Therefore, conservation of pollen with high vitality is crucial to ensure successful pollination of P. ostii. In this study, we found an effective methodological system to assess the viability, ability to germinate, and optimal storage conditions of P. ostii pollen grains. The optimal medium in vitro was 50 g/L sucrose, 100 mg/L boric acid, 50 g/L PEG6000, 100 mg/L potassium nitrate, 300 mg/L calcium nitrate, and 200 mg/L magnesium sulfate at pH 5.4. Optimal germination condition in vitro was achieved at 25 °C for 120 min, allowing easy observation of the germination percentage and length of the pollen tubes. In addition, the viability of pollen grains was assessed by comparing nine staining methods. Among them, MTT, TTC, benzidine-H2O2, and FDA were effective to distinguish between viable and non-viable pollen, and the results of the FDA staining method were similar to the pollen germination percentage in vitro. After evaluation of pollen storage, thawing and rehydration experiments showed that thawing at 4 °C for 30 min and rehydration at 25 °C for 30 min increased the germination percentage of pollen grains stored at low temperatures. The low-temperature storage experiments showed that 4 °C was suitable for short-term storage of P. ostii pollen grains, while -80 °C was suitable for long-term storage. This is the first report on the in vitro germination, viability tests, and storage of P. ostii pollen grains, which will provide useful information for P. ostii germplasm conservation and artificial pollination.

5.
Opt Express ; 30(21): 38674-38683, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36258426

ABSTRACT

We demonstrate high-sensitivity vibrational absorption spectroscopy in the 2-micron wavelength range by using a mode-locked Cr:ZnS laser. Interferometric subtraction and multichannel detection across the broad laser spectrum realize simultaneous background-free detection of multiple vibrational modes over a spectral span of >380 cm-1. Importantly, we achieve detection of small absorbance on the order of 10-4, which is well below the detection limit of conventional absorption spectroscopy set by the detector dynamic range. The results indicate the promising potential of the background-free method for ultrasensitive and rapid detection of trace gases and chemicals.

6.
Medicine (Baltimore) ; 101(34): e30112, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36042592

ABSTRACT

BACKGROUND: To examine the expression level of procollagen-lysine2-oxoglutarate 5-dioxygenase 2 (PLOD2) in esophageal squamous cell carcinoma (ESCC) and analyze its correlation with clinicopathological parameters, in order to explore the mechanism of PLOD2 in regulating invasion and metastasis of ESCC. METHODS: Immunohistochemistry was used to detect the expression level of PLOD2 in tumor tissues and paired adjacent tissues of 172 patients with ESCC, and the relationship between PLOD2 expression and clinicopathological parameters was analyzed. The deposition of collagen fibers in tumor was detected by Sirius red staining. The correlation between tumor stem cells and epithelial-mesenchymal transition (EMT) markers ZEB1 was analyzed by multivariate logistic regression. RESULTS: The expression level of PLOD2 in tumor tissues of patients with ESCC (70.35%, 121/172) was significantly higher than that in paired adjacent tissues (29.65%, 51/172; P < .01). The positive expression rate of PLOD2 in ESCC was related to T classification, lymph node metastasis, and pathological tumor node metastasis of a tumor. The expression rates of ZEB1, CD44, and CD133 in ESCC were correlated with T classification, lymph node metastasis and pathological tumor node metastasis. Scarlet red staining showed that collagen fiber deposition in ESCC tissues with high expression of PLOD2 was significantly higher than that in tissues with low expression of PLOD2 (P < .01). A positive correlation was observed between the expression of PLOD2 and CD133, PLOD2 and CD44, and PLOD2 and N-cadherin (P < .01). Moreover, a negative correlation was noted between the expression of PLOD2 and E-cadherin (P < .01). The combined expression of PLOD2 and ZEB1 were independent prognostic factors for the total survival time of patients with ESCC. CONCLUSION: PLOD2 is highly expressed in ESCC and is closely related to tumor invasion and metastasis. The mechanism of PLOD2 for promoting invasion and metastasis of ESCC may be related to activation of the EMT signaling pathway to promote EMT and tumor stem cell transformation.


Subject(s)
Dioxygenases , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Dioxygenases/metabolism , Epithelial-Mesenchymal Transition , Esophageal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Humans , Lymphatic Metastasis , Neoplasm Invasiveness/genetics , Neoplastic Stem Cells/pathology , Procollagen/metabolism , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/genetics , Prognosis
7.
Materials (Basel) ; 15(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35629662

ABSTRACT

Memristive behaviors are demonstrated in the single-layer oxide-based devices. The conduction states can be continually modulated with different pulses or voltage sweeps. Here, the p-CuAlO2- and n-ZnO-based memristors show the opposite bias polarity dependence with the help of tip electrode. It is well known that the conductivity of p-type and n-type semiconductor materials has the opposite oxygen concentration dependence. Thus, the memristive behaviors may attribute to the oxygen ion migration in the dielectric layers for the single-layer oxide based memristors. Further, based on the redox, the model of compressing dielectric layer thickness has been proposed to explain the memristive behavior.

8.
Opt Lett ; 47(3): 637-640, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35103692

ABSTRACT

Self-powered ultraviolet detectors may find application in aviation and military fields. Here we demonstrate a self-powered asymmetric metal-semiconductor-metal (MSM) deep ultraviolet (DUV) detector with an Ni/Al electrode contact to AlN, and a photoelectric response current increase from dark current (Id) 2.6 × 10-12 A to 1.0 × 10-10 A after UV illumination (Ip) at 0 V bias. To further improve device performance, trenches are etched in AlN, and the Ni/Al electrodes are deposited in trenches to form a three-dimensional MSM (3D-MSM) structure. The improved performance is attributed to the stronger electric field from the asymmetric electrode and a shorter carrier migration path from the 3D-MSM device configuration. Our work will promote the development and application of DUV self-powered devices.

9.
Opt Lett ; 47(23): 6077-6080, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-37219176

ABSTRACT

We demonstrate spectral peak formation in a mode-locked solid-state laser that contains a gas cell inside the cavity. Symmetric spectral peaks appear in the course of sequential spectral shaping through resonant interaction with molecular rovibrational transitions and nonlinear phase modulation in the gain medium. The spectral peak formation is explained as that narrowband molecular emissions triggered by an impulsive rovibrational excitation are superposed on the broadband spectrum of the soliton pulse by constructive interference. The demonstrated laser, which exhibits comb-like spectral peaks at molecular resonances, potentially provides novel tools for ultrasensitive molecular detection, vibration-mediated chemical reaction control, and infrared frequency standards.

10.
Environ Pollut ; 294: 118614, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34863889

ABSTRACT

The urban inland river ecosystems are now facing comprehensive pollution and governance pressures. Up to now, few works related to the multiple pollution assessment of trace metals, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) for the urban inland river sediments have been reported in China. Our study investigated the spatial distribution, ecological risk and potential sources of trace metals, PAHs and PCBs in surface sediment collected from 20 sampling sites of Sanya River, Hainan Province, China. The pollution status and potential ecological risk of trace metals were evaluated using the contamination indexes including geoaccumulation index (Igeo), individual potential ecological risk (Eri), potential ecological risk index (RI) and pollution load index (PLI). Considering the carcinogenicity and toxicity of PAHs and PCBs to human health and the ecological environment, we also analyzed the distributions, sources and adverse biological effects of PAHs and PCBs according to the sediment quality guidelines (SQGs), principal component analysis (PCA) and other source analysis. This study revealed that the surface sediments in Sanya River were extremely slight pollution and showed a very low ecological risk according to Igeo, Eri, PLI and RI results for trace metals. Besides, PAHs and PCBs pollution detected may not pose considerable adverse biological effect to ecological environment in a foreseeable period on the basis of comprehensive research results. The overall surface sediments quality of the Sanya River not seem to pose a serious pollution and ecological risk based on the evaluation results of multiple pollution factors. The study provided detailed information on the multiple pollution status and location of surface sediments, one of the key environmental indicators of international tourism cities, in the Sanya River, which would be useful for the water quality improvement of Sanya River and the environmental remediation of the other coastal ecosystems from different regions.


Subject(s)
Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , China , Ecosystem , Environmental Monitoring , Geologic Sediments , Humans , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment , Rivers , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL