Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Nature ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776962

ABSTRACT

AMPylation is a posttranslational modification that generally modifies amino acid side chains of proteins with adenosine monophosphate (AMP)1,2. Here we report that with ATP as the ligand and actin as the host activator, the effector protein LnaB of Legionella pneumophila exhibits AMPylase activity toward the phosphoryl group of phosphoribose on PRR42-Ub that is generated by the SidE family effectors and deubiquitinases DupA/B in an E1/E2-independent ubiquitination process3-7. The product of LnaB is further hydrolyzed by an ADP-ribosyl hydrolase, MavL, to be Ub, thereby preventing accumulation of PRR42-Ub and ADPRR42-Ub and protecting the canonical ubiquitination in host cells. LnaB represents a large family of AMPylases adopting a common structural fold, which is distinct from those of the previously known AMPylases, in bacterial pathogens of more than 20 species. Moreover, LnaB also exhibits robust phosphoryl AMPylase activity toward phosphorylated residues and produces unique ADPylation modification in proteins. During infection, LnaB AMPylates the conserved phosphorylated tyrosine residues in the activation loop of the Src family kinases8,9, which dampens the host downstream phosphorylation signaling. Structural studies revealed the actin-dependent activation and catalytic mechanisms of the LnaB family of AMPylases. This study presents an unprecedented regulation and molecular mechanism in bacterial pathogenesis and protein phosphorylation.

2.
Poult Sci ; 103(6): 103725, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38603933

ABSTRACT

Since 2012, there has been a noticeable upward trend in the global incidence of inclusion body hepatitis (IBH) cases, leading to substantial economic losses in the poultry industry. In response to this trend, the current study aimed to investigate the phylogenetic information, genetic mutations, and pathogenicity of the highly pathogenic fowl adenovirus (FAdV) strain HN1472, which was isolated from liver samples obtained from a laying flock affected by IBH. This investigation was carried out using 1-day-old specific pathogen-free (SPF) chickens. Recombination and phylogenetic analyses confirmed that HN1472 is a recombinant strain derived from FAdV-8a and FAdV-8b, and exhibited significant genetic divergence in the hexon, fiber, and ORF19 genes. Notably, the phylogenetic analysis identified recombination events in these regions. Furthermore, animal experiments revealed that HN1472 is a highly pathogenic isolate, causing 80% mortality and manifesting clinical signs of IBH in SPF chickens. Furthermore, the recombinant FAdV serotype 8b (FAdV-8b) was found to be widely distributed in various tissues, with a higher concentration in the livers and gizzard tissue at 3 d postchallenge (dpc). Collectively, these findings contribute to our current understanding of the factors influencing the pathogenicity and genetic diversity of FAdV serotype 8b (FAdV-8b) in China.

3.
J Colloid Interface Sci ; 662: 263-275, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38354554

ABSTRACT

Defect-engineered metal-organic frameworks (DEMOFs) are emerging advanced materials. The construction of DEMOFs is of great significance; however, DEMOF-based catalysis remains unexplored. (E)-vinylboronates, an important building block for asymmetric synthesis, can be synthesized via the hydroboration of alkynes. However, the lack of high-performance catalysts considerably hinders their synthesis. Herein, a series of DEHKUST-1 (HKUST = Hong Kong University of Science and Technology) (Da-f) catalysts with missing occupation of linkers at Cu nodes were designed by partially replacing benzene-1,3,5-tricarboxylate (H3BTC) with defective connectors of pyridine-3,5-dicarboxylate (PYDC) to efficiently promote the hydroboration of alkynes. Results showed that the Dd containing 0.8 doping ratio of PYDC exhibited remarkable catalytic activity than the defect-free HKUST-1. This originated from the improved accessibility for reactants towards the Lewis acid active Cu sites of DEHKUST-1 due to the presence of plenty of rooms next to the Cu sites and enhanced coordination ability in such 'defective' HKUST-1. Dd had high selectivity (>99 %) and yield (>96 %) for (E)-vinylboronates and extensive functional group compatibility for terminal alkynes. Density functional theory (DFT) calculations were performed to elucidate the mechanism of hydroboration. Compared with that of defect-free HKUST-1, the low energy barrier of DEHKUST-1 can be attributed to the lower coordination number of Cu sites and enhanced accessibility of Cu active sites towards reagents.

4.
Genes (Basel) ; 14(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38136991

ABSTRACT

A transcriptome profiles the expression levels of genes in cells and has accumulated a huge amount of public data. Most of the existing biomarker-related studies investigated the differential expression of individual transcriptomic features under the assumption of inter-feature independence. Many transcriptomic features without differential expression were ignored from the biomarker lists. This study proposed a computational analysis protocol (mqTrans) to analyze transcriptomes from the view of high-dimensional inter-feature correlations. The mqTrans protocol trained a regression model to predict the expression of an mRNA feature from those of the transcription factors (TFs). The difference between the predicted and real expression of an mRNA feature in a query sample was defined as the mqTrans feature. The new mqTrans view facilitated the detection of thirteen transcriptomic features with differentially expressed mqTrans features, but without differential expression in the original transcriptomic values in three independent datasets of lung cancer. These features were called dark biomarkers because they would have been ignored in a conventional differential analysis. The detailed discussion of one dark biomarker, GBP5, and additional validation experiments suggested that the overlapping long non-coding RNAs might have contributed to this interesting phenomenon. In summary, this study aimed to find undifferentially expressed genes with significantly changed mqTrans values in lung cancer. These genes were usually ignored in most biomarker detection studies of undifferential expression. However, their differentially expressed mqTrans values in three independent datasets suggested their strong associations with lung cancer.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/genetics , Lung Neoplasms/diagnosis , Gene Expression Profiling , Transcriptome/genetics , Biomarkers , RNA, Messenger/genetics
5.
J Thorac Dis ; 15(6): 3143-3157, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37426164

ABSTRACT

Background: It has been proposed that bacterial lysates may serve as a suitable immunomodulatory oral medication to improve and control asthma symptoms. However, the difference in its efficacy in adults and children remains unclear. Methods: Randomized controlled trials (RCTs) evaluating OM-85 add-on therapy in asthma patients up to December 2021 were searched using PubMed, Scopus, Web of Science, China National Knowledge Infrastructure (CNKI), Wanfang database, and WP (WeiPu) database. Risk of bias was evaluated using the Cochrane risk of bias assessment tool. Results: A total of 36 studies were included. The results showed that OM-85 add-on treatment provided a 24% improvement in asthma symptom control [relative rates (RR) =1.24, 95% confidence intervals (CI): 1.19-1.30], and also significantly improved lung function, increased numbers of T-lymphocytes and the subtypes, and elevated levels of interferon-γ (IFN-γ), interleukin-10 (IL-10), and IL-12. Levels of serum immunoglobulin E (IgE), eosinophil cationic protein (ECP) and pro-inflammatory cytokines (including IL-4 and IL-5) were suppressed in the OM-85 add-on treatment group. Moreover, OM-85 add-on treatment showed more prominent effects in asthmatic children than in asthmatic adults. Conclusions: OM-85 add-on therapy showed important clinical benefits for patients with asthma, especially asthmatic children. Further studies focusing on the immunomodulatory function of OM-85 in personalized asthma treatment are warranted.

6.
Virus Res ; 330: 199113, 2023 06.
Article in English | MEDLINE | ID: mdl-37040821

ABSTRACT

Highly pathogenic fowl adenovirus serotype 4 (FAdV-4) is an acute infectious disease with severe economic impact, causing chicken hepatitis hydropericardium syndrome (HHS) and high mortality. In the present study, we evaluated the immunogenicity of the recombinant Fiber2-knob protein (F2-Knob) as an FAdV-4 candidate subunit vaccine in 14-day-old SPF chickens. The knob domain is the functional region of the viral surface protein Fiber2. The protein was expressed in Escherichia coli and was administered a single immunization with different vaccine doses. The protective efficacy was evaluated by mortality, clinical symptoms, virus shedding and histopathological examinations after challenged with the FAdV-4. The results showed that the level of ELISA antibodies of the chickens immunized with Fiber2-knob protein was significantly higher than that of the chickens immunized with an inactivated vaccine against FAdV-4. The antibody value of the immunized Fiber2-knob protein was positively correlated with the increase in immunization dose. The challenge experiment showed that the F2-Knob protein provided full protection against virulent FAdV-4 challenge and significantly reduced viral shedding. These results suggest that F2-Knob protein could be a novel vaccine candidate provide insights to control FAdV-4.


Subject(s)
Adenoviridae Infections , Poultry Diseases , Viral Vaccines , Animals , Adenoviridae Infections/prevention & control , Adenoviridae Infections/veterinary , Serogroup , Chickens , Antibodies, Viral , Adenoviridae , Recombinant Proteins
7.
Front Physiol ; 14: 957758, 2023.
Article in English | MEDLINE | ID: mdl-36969579

ABSTRACT

Background/aim: Patients with elevated intracranial pressure (ICP) tend to have optic disc edema and a thicker optic nerve sheath diameter (ONSD). However, the cut-off value of the optic disc height (ODH) for evaluating elevated ICP is not clear. This study was conducted to evaluate ultrasonic ODH and to investigate the reliability of ODH and ONSD for elevated ICP. Methods: Patients suspected of having increased ICP and who underwent a lumbar puncture were recruited. ODH and ONSD were measured before lumbar puncture. Patients were divided according to elevated and normal ICP. We analyzed the correlations between ODH, ONSD, and ICP. ODH and ONSD cut-off points for the identification of elevated ICP were determined and compared. Results: There were a total of 107 patients recruited for this study, 55 patients with elevated ICP and 52 with normal ICP. Both ODH and ONSD in the elevated ICP group were higher than in the normal group [ODH: median 0.81 (range 0.60-1.06) mm vs. 0.40 [0-0.60] mm, p < 0.001; ONSD: 5.01 ± 0.37 mm vs. 4.20 ± 0.38 mm, p < 0.001]. ICP was positively correlated with ODH (r = 0.613; p < 0.001) and ONSD (r = 0.792; p < 0.001). The cut-off values of ODH and ONSD for evaluating elevated ICP were 0.63 mm and 4.68 mm, respectively, with 73% and 84% sensitivity and 83% and 94% specificity, respectively. ODH combined with ONSD showed the highest value under the receiver operating characteristic curve of 0.965 with a sensitivity of 93% and a specificity of 92%. Conclusion: Ultrasonic ODH combined with ONSD may help monitor elevated ICP non-invasively.

8.
Microbiol Spectr ; : e0231722, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36946739

ABSTRACT

Cerebral malaria (CM), caused by Plasmodium falciparum, is the primary cause of death from severe malaria. Even after immediate parenteral therapy with antimalarial drugs, the mortality rate remains 15 to 25%. Currently, no effective therapeutic agents are available for the radical treatment of CM. Thus, further in-depth explorations of adjuvant therapies in combination with antimalarial drugs are urgently needed. The experimental cerebral malaria (ECM) model was established by infecting C57BL/6 mice with Plasmodium berghei ANKA. Subsequently, infected mice were continuously treated with dihydroartemisinin (DHA) in combination with rapamycin (RAP) and atorvastatin (AVA) for 5 days at different time points, including day 0, day 3, and day 6 postinfection (p.i.). Treatment efficacy was evaluated by comparing behavioral scores, body weight, parasitemia, survival rate, blood-brain barrier (BBB) integrity, and histopathology. The optimal combination therapy of DHA, RAP, and AVA on day 3 p.i. was selected for ECM. This strategy significantly improved survival rate, reduced parasitemia, improved the rapid murine coma and behavioral scale scores and permeability of the BBB, attenuated cerebrovascular and hepatic central venous obstruction and hemozoin deposition in the liver, and decreased the red pulp area of the spleen, which effectively ameliorated neurological damage in ECM. It also improved histopathology and neurological damage caused by ECM. In this study, the optimal therapeutic strategy for ECM was selected, which is expected to be a potential therapy for human CM. IMPORTANCE Although artemisinin-based combination therapies (ACTs) have greatly improved the clinical outcome of cerebral malaria (CM) as a fatal disease that can permanently disable a significant proportion of children even if they survive, new treatment options are needed as Plasmodium falciparum develops resistance to antimalarial drugs. Recent reports suggest that basal treatment with artemisinin derivatives often fails to protect against cell death, neurological damage, and cognitive deficits. In this study, the combination of dihydroartemisinin with rapamycin and atorvastatin improved the current antimalarial outcomes by overcoming the limitations of current antimalarials for CM morbidity and neurological sequelae. This combination offers a new adjunctive treatment for the clinical treatment of human CM in susceptible populations, including children under 5 years old and pregnant women.

9.
Microbiol Spectr ; 10(6): e0253522, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36445076

ABSTRACT

Since single nucleotide polymorphisms (SNPs) have attracted attention, there have been many explorations and improvements in screening and detection methods for SNPs. Traditional methods are complex and time-consuming and rely on expensive instruments. Therefore, there is an urgent need for a low-cost, simple, and accurate method that is convenient for use in resource-poor areas. Thus, a platform based on allele-specific PCR (AS-PCR) and a gold nanoparticle-based lateral flow assay (LFA) was developed, optimized, and used to detect the SNPs of the drug resistance gene pfmdr1. Subsequently, the system was assessed on clinical isolates and compared with nested PCR followed by Sanger sequencing. The sensitivity and specificity of the AS-PCR-LFA platform were up to 99.43% and 100%, respectively, based on the clinical isolates. The limit of detection is approximately 150 fg/µL for plasmid DNA as the template and 50 parasites/µL for dried filter blood spots from clinical isolates. The established and optimized AS-PCR-LFA system is more adaptable and rapidly translated to SNP analysis of other drug resistance genes and genetic diseases. In addition, while actively responding to the point-of-care testing policy, it also contributes to the Global Malaria Eradication Program. IMPORTANCE Rapid detection of single nucleotide polymorphisms (SNPs) is essential for malaria treatment. Based on the techniques of allele-specific PCR (AS-PCR) and lateral flow assay (LFA), an accurate and powerful platform for SNP detection of pfmdr1 was developed and evaluated with plasmid and clinical isolates. It offers a useful tool to identify antimalarial drug resistance and can support the effort to eliminate malaria globally.


Subject(s)
Antimalarials , Metal Nanoparticles , Plasmodium falciparum , Alleles , Antimalarials/pharmacology , Drug Resistance/genetics , Gold/therapeutic use , Multidrug Resistance-Associated Proteins/genetics , Mutation , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Polymerase Chain Reaction , Protozoan Proteins/genetics
10.
Front Cell Infect Microbiol ; 12: 939532, 2022.
Article in English | MEDLINE | ID: mdl-35959375

ABSTRACT

Cerebral malaria (CM) caused by Plasmodium falciparum is a fatal neurological complication of malaria, resulting in coma and death, and even survivors may suffer long-term neurological sequelae. In sub-Saharan Africa, CM occurs mainly in children under five years of age. Although intravenous artesunate is considered the preferred treatment for CM, the clinical efficacy is still far from satisfactory. The neurological damage induced by CM is irreversible and lethal, and it is therefore of great significance to unravel the exact etiology of CM, which may be beneficial for the effective management of this severe disease. Here, we review the clinical characteristics, pathogenesis, diagnosis, and clinical therapy of CM, with the aim of providing insights into the development of novel tools for improved CM treatments.


Subject(s)
Malaria, Cerebral , Malaria, Falciparum , Child , Child, Preschool , Humans , Malaria, Cerebral/diagnosis , Malaria, Cerebral/therapy , Malaria, Falciparum/diagnosis , Malaria, Falciparum/drug therapy , Plasmodium falciparum
11.
Front Microbiol ; 13: 858897, 2022.
Article in English | MEDLINE | ID: mdl-35432291

ABSTRACT

Rodent malaria caused by Plasmodium yoelii 17XL (Py 17XL) is an ideal animal model for human malaria studies. Although the gut microbiota plays an important role in the occurrence and development of infectious diseases, the gut microbiota associated with Py 17XL infection remains unclear. In the current study, the gut microbiota composition of infected BALB/c mice was surveyed. Mouse fecal samples were collected at 0, 2, 5 days post-infection (dpi), and the gut microbiota was characterized by 16S rRNA sequencing. Operational taxonomic units (OTUs) were 634 ± 26 on average. Firmicutes and Bacteroidetes were typically predominant in the gut microbiota composition at the phylum level. Compared with the Ctrl, Firmicutes was significantly decreased after infection, while Bacteroidetes was notably increased. The most dominant family was Lactobacillaceae in all samples. The alpha diversity index showed that compared with that of the Ctrl, the observed OTU number was decreased at 2 dpi and then slightly increased at 5 dpi. LEfSe analysis revealed several bacterial taxa were notably related to Py-infected mice at the phylogenetic level. Several bacterial genera, such as Lactobacillus, were overrepresented in the Py-infected fecal microbiota at 2 dpi, while Muribaculaceae was overrepresented at 5 dpi. Moreover, Alistipes and Helicobacter were overrepresented at 5 dpi compared with 2 dpi. The results indicated Py infection could alter the gut microbiota composition of mice. Besides, biomarkers could serve as direct targets to elucidate their roles in the progression and pathogenesis of malaria and provide insights into studies of antimalarial drugs and malaria vaccines.

12.
Infect Genet Evol ; 101: 105286, 2022 07.
Article in English | MEDLINE | ID: mdl-35470127

ABSTRACT

BACKGROUND: Molecular markers for monitoring resistance could help improve malaria treatment policies. Delayed clearance of Plasmodium falciparum by artemisinin-based combination therapies (ACTs) has been reported in several countries. In addition to PfKelch13 (pfk13), new drug resistance genes, P. falciparum ubiquitin-specific protease 1 (pfubp1) and the eadaptor protein complex 2 mu subunit (pfap2mu), have been identified as being linked to ACTs. This study investigated the prevalence of single-nucleotide polymorphisms (SNPs) in clinical P. falciparum isolates pfubp1 and pfap2mu imported from Africa and Southeast Asia (SEA) to Wuhan, China, to provide baseline data for antimalarial resistance monitoring in this region. METHODS: Peripheral venous blood samples were collected in Wuhan, China, from August 2011 to December 2019. The Pfubp1 and pfap2mu SNPs of P. falciparum were determined by nested PCR and Sanger sequencing. RESULTS: In total, 296 samples were collected. Subsequently, 92.23% (273/296) were successfully amplified and sequenced for Pfubp1. There were 60.07% (164/273) wild-type strains and 39.93% (109/273) mutant strains. The pfap2mu gene was divided into three fragments for amplification, and 82.77% (245/296), 90.20% (267/296) and 94.59% (280/296) were sequenced successfully. Genotypes reportedly associated with ACTs resistance detected in this study included pfubp1 D1525E as well as E1528D and pfap2mu S160N. The mutation prevalence rates were 10.99% (30/273), 13.19% (36/273) and 11.24% (30/267), respectively. These are all focused on Congo, Nigeria and Angola. Known delayed-clearance parasite mutations have also been found in SEA. CONCLUSIONS: The existence of mutation sites of known clearance genes detected in the isolates in this study, including D1525E and E1528D in the pfubp1 gene and S160N in the pfap2mu gene, further proved the risk of ACTs resistance. Constant vigilance is therefore needed to protect the effectiveness of ACTs and to prevent the spread of drug-resistant P. falciparum. Further studies in malaria-endemic countries are needed to further validate potential genetic markers for monitoring parasite populations in Africa and SEA.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Malaria , Parasites , Animals , Angola , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , China/epidemiology , Drug Resistance/genetics , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Mutation , Plasmodium falciparum/genetics , Polymorphism, Single Nucleotide , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
13.
Microbiol Spectr ; 10(2): e0271921, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35416696

ABSTRACT

Single-nucleotide polymorphisms and genotyping related to genetic detection are several of the focuses of contemporary biotechnology development. Traditional methods are complex, take a long time, and rely on expensive instruments. Therefore, there is an urgent need for a rapid, simple, and accurate method convenient for use in resource-poor areas. Thus, a platform based on allele-specific PCR (AS-PCR) combined with a lateral flow assay (LFA) was developed, optimized, and used to detect the genotype of the Plasmodium falciparum chloroquine transporter gene (pfcrt). Subsequently, the system was assessed by clinical isolates and compared with Sanger sequencing. The sensitivity and specificity of the AS-PCR-LFA platform were 95.83% (115/120) and 100% (120/120), respectively, based on the clinical isolates. The detection limit of plasmid DNA was approximately 3.38 × 105 copies/µL. In addition, 100 parasites/µL were used for the dried filter blood spots from clinical isolates. The established rapid genotyping technique is not limited to antimalarial drug resistance genes but can also be applied to genetic diseases and other infectious diseases. Thus, it has realized the leap and transformation from scientific research theory to practical application and actively responds to the point-of-care testing policy. IMPORTANCE Accurate recognition of the mutation and genotype of genes are essential for the treatment of infectious diseases and genetic diseases. Based on the techniques of allele-specific PCR (AS-PCR) and a lateral flow assay (LFA), a rapid and useful platform for mutation detection was developed and assessed with clinical samples. It offers a powerful tool to identify antimalarial drug resistance and can support malaria control and elimination globally.


Subject(s)
Antimalarials , Malaria, Falciparum , Alleles , Antimalarials/pharmacology , Antimalarials/therapeutic use , Chloroquine/pharmacology , Chloroquine/therapeutic use , Drug Resistance/genetics , Genotype , Humans , Malaria, Falciparum/drug therapy , Plasmodium falciparum/genetics , Polymerase Chain Reaction/methods , Protozoan Proteins/genetics , Protozoan Proteins/therapeutic use
14.
Front Cell Infect Microbiol ; 11: 680383, 2021.
Article in English | MEDLINE | ID: mdl-34778098

ABSTRACT

The genus of Plasmodium parasites can cause malaria, which is a prevalent infectious disease worldwide, especially in tropical and subtropical regions. C57BL/6 mice infected with P. berghei ANKA (PbA) will suffer from experimental cerebral malaria (ECM). However, the gut microbiota in C57BL/6 mice has rarely been investigated, especially regarding changes in the intestinal environment caused by infectious parasites. P. berghei ANKA-infected (PbA group) and uninfected C57BL/6 (Ctrl group) mice were used in this study. C57BL/6 mice were infected with PbA via intraperitoneal injection of 1 × 106 infected red blood cells. Fecal samples of two groups were collected. The microbiota of feces obtained from both uninfected and infected mice was characterized by targeting the V4 region of the 16S rRNA through the Illumina MiSeq platform. The variations in the total gut microbiota composition were determined based on alpha and beta diversity analyses of 16S rRNA sequencing. The raw sequences from all samples were generated and clustered using ≥ 97% sequence identity into many microbial operational taxonomic units (OTUs). The typical microbiota composition in the gut was dominated by Bacteroidetes, Firmicutes, Proteobacteria, and Verrucomicrobia at the phylum level. Bacteroidetes and Verrucomicrobia were considerably decreased after PbA infection compared with the control group (Ctrl), while Firmicutes and Proteobacteria were increased substantially after PbA infection compared with Ctrl. The alpha diversity index showed that the observed OTU number was increased in the PbA group compared with the Ctrl group. Moreover, the discreteness of the beta diversity revealed that the PbA group samples had a higher number of OTUs than the Ctrl group. LEfSe analysis revealed that several potential bacterial biomarkers were clearly related to the PbA-infected mice at the phylogenetic level. Several bacterial genera, such as Acinetobacter, Lactobacillus, and Lachnospiraceae_NK4A136_group, were overrepresented in the PbA-infected fecal microbiota. Meanwhile, a method similar to gene coexpression network construction was used to generate the OTU co-abundance units. These results indicated that P. berghei ANKA infection could alter the gut microbiota composition of C57BL/6 mice. In addition, potential biomarkers should offer insight into malaria pathogenesis and antimalarial drug and malaria vaccine studies.


Subject(s)
Gastrointestinal Microbiome , Malaria , Animals , Mice , Mice, Inbred C57BL , Phylogeny , Plasmodium berghei , RNA, Ribosomal, 16S/genetics
15.
Muscle Nerve ; 64(5): 560-566, 2021 11.
Article in English | MEDLINE | ID: mdl-34355400

ABSTRACT

INTRODUCTION/AIMS: Ultrasound (US) studies have demonstrated patchy enlargement of spinal and peripheral nerves in Guillain-Barré syndrome (GBS). However, whether ultrasound yields useful information for early classification of GBS has not been established. We aimed to evaluate nerve ultrasound in patients with GBS in northern China and compare the sonographic characteristics between demyelinating and axonal subtypes. METHODS: Between November 2018 and October 2019, 38 hospitalized GBS patients within 3 wk of disease onset and 40 healthy controls were enrolled. Ultrasonographic cross-sectional areas (CSA) of the peripheral nerves, vagus nerve, and cervical nerve roots were prospectively recorded in GBS subtypes and controls. RESULTS: Ultrasonographic CSA exhibited significant enlargement in most patients' nerves compared with healthy controls, most prominent in cervical nerves. The CSA tended to be larger in acute inflammatory demyelinating polyneuropathy (AIDP) than in acute motor axonal neuropathy (AMAN)/acute motor and sensory axonal neuropathy (AMSAN), especially in cervical nerves (C5: 5.9 ± 1.6 mm2 vs. 7.0 ± 1.7 mm2 , p = .042; C6: 10.5 ± 1.8 mm2 vs. 12.0 ± 2.1 mm2 , p = .033). The chi-squared test revealed significant differences in nerve enlargement in C5 (p < .001), C6 (p < .001), the proximal median nerve (p < .001), and the vagus nerve (p = .003) between GBS and controls. The vagus nerve was larger in patients with autonomic dysfunction than in patients without it (2.3 ± 1.0 mm2 vs. 1.4 ± 0.5 mm2 , p = .003). DISCUSSION: The demyelinating subtype presented with more significant cervical nerve enlargement in GBS. Vagus nerve enlargement may be a useful marker for autonomic dysfunction.


Subject(s)
Guillain-Barre Syndrome , China , Guillain-Barre Syndrome/diagnostic imaging , Humans , Neural Conduction/physiology , Peripheral Nerves/diagnostic imaging , Spinal Nerves/diagnostic imaging , Ultrasonography
16.
Front Neurol ; 12: 600985, 2021.
Article in English | MEDLINE | ID: mdl-34079507

ABSTRACT

Posterior circulation cerebral infarction (PCCI) can lead to deceased infratentorial cerebral blood flow (CBF) and metabolism. Neural activity is closely related to regional cerebral blood flow both spatially and temporally. Transcranial Doppler (TCD) combined with quantitative electroencephalography (QEEG) is a technique that evaluates neurovascular coupling and involves synergy between the metabolic and vascular systems. This study aimed to monitor brain function using TCD-QEEG and estimate the efficacy of TCD-QEEG for predicting the prognosis of patients with PCCI. We used a TCD-QEEG recording system to perform quantitative brain function monitoring; we recorded the related clinical variables simultaneously. The data were analyzed using a Cox proportional hazards regression model. Receiver-operating characteristic (ROC) curve analysis was used to evaluate the cut-off for the diastolic flow velocity (VD) and (delta + theta)/(alpha + beta) ratio (DTABR). The area under the ROC curve (AUROC) was calculated to assess the predictive validity of the study variables. Forty patients (aged 63.7 ± 9.9 years; 30 men) were assessed. Mortality at 90 days was 40%. The TCD indicators of VD [hazard ratio (HR) 0.168, confidence interval (CI) 0.047-0.597, p = 0.006] and QEEG indicators of DTABR (HR 12.527, CI 1.637-95.846, p = 0.015) were the independent predictors of the clinical outcomes. The AUROC after combination of VD and DTABR was 0.896 and showed better predictive accuracy than the Glasgow Coma Scale score (0.75), VD (0.76), and DTABR (0.781; all p < 0.05). TCD-QEEG provides a good understanding of the coupling mechanisms in the brain and can improve our ability to predict the prognosis of patients with PCCI.

17.
Malar J ; 20(1): 209, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33933099

ABSTRACT

BACKGROUND: Imported malaria parasites with anti-malarial drug resistance (ADR) from Africa is a serious public health challenge in non-malarial regions, including Wuhan, China. It is crucial to assess the ADR status in African Plasmodium falciparum isolates from imported malaria cases, as this will provide valuable information for rational medication and malaria control. METHODS: During 2017-2019, a cross-sectional study was carried out in Wuhan, China. Peripheral blood 3 ml of returned migrant workers from Africa was collected. The target fragments from pfcrt, pfmdr1, and k13 propeller (pfk13) genes were amplified, sequenced, and analysed. RESULTS: In total, 106 samples were collected. Subsequently, 98.11% (104/106), 100% (106/106), and 86.79% (92/106) of these samples were successfully amplified and sequenced for the pfcrt (72-76), pfmdr1, and pfk13 genes, respectively. The prevalence of the pfcrt 76 T, pfmdr1 86Y, and pfmdr1 184F mutations was 9.62, 4.72, and 47.17%, respectively. At codons 72-76, the pfcrt locus displayed three haplotypes, CVMNK (wild-type), CVIET (mutation type), CV M/I N/E K/T (mixed type), with 87.50%, 9.62%, and 2.88% prevalence, respectively. For the pfmdr1 gene, NY (wild type), NF and YF (mutant type), N Y/F, Y Y/F, and N/Y Y/F (mixed type) accounted for 34.91, 43.40, 3.77, 15.09, 0.94, and 1.89% of the haplotypes, respectively. A total of 83 isolates with six unique haplotypes were found in pfcrt and pfmdr1 combined haplotypes, of which NY-CVMNK and NF-CVMNK accounted for 40.96% (34/83) and 43.37% (36/83), respectively. Furthermore, 90 cases were successfully sequenced (84.91%, 90/106) at loci 93, 97, 101, and 145, and 78 cases were successfully sequenced (73.58%, 78/106) at loci 343, 353, and 356 for pfcrt. However, the mutation was observed only in locus 356 with 6.41%. For pfk13, mutations reported in Southeast Asia (at loci 474, 476, 493, 508, 527, 533, 537, 539, 543, 553, 568, 574, 578, and 580) and Africa (at loci 550, 561, 575, 579, and 589) were not observed. CONCLUSIONS: The present data from pfcrt and pfmdr1 demonstrate that anti-malarial drugs including chloroquine, amodiaquine, and mefloquine, remain effective against malaria treatment in Africa. The new mutations in pfcrt related to piperaquine resistance remain at relatively low levels. Another source of concern is the artemether-lumefantrine resistance-related profiles of N86 and 184F of pfmdr1. Although no mutation in pfk13 is detected, molecular surveillance must continue.


Subject(s)
Membrane Transport Proteins/genetics , Multidrug Resistance-Associated Proteins/genetics , Mutation , Plasmodium falciparum/genetics , Polymorphism, Genetic , Protozoan Proteins/genetics , Africa , Antimalarials/therapeutic use , China , Communicable Diseases, Imported/drug therapy , Cross-Sectional Studies , Malaria, Falciparum/drug therapy , Membrane Transport Proteins/metabolism , Multidrug Resistance-Associated Proteins/metabolism , Mutation/drug effects , Plasmodium falciparum/drug effects , Polymorphism, Single Nucleotide , Protozoan Proteins/metabolism
18.
Front Cell Infect Microbiol ; 11: 613304, 2021.
Article in English | MEDLINE | ID: mdl-33598439

ABSTRACT

Background: The emerging Coronavirus Disease-2019 (COVID-19) has challenged the public health globally. With the increasing requirement of detection for SARS-CoV-2 outside of the laboratory setting, a rapid and precise Point of Care Test (POCT) is urgently needed. Methods: Targeting the nucleocapsid (N) gene of SARS-CoV-2, specific primers, and probes for reverse transcription recombinase-aided amplification coupled with lateral flow dipstick (RT-RAA/LFD) platform were designed. For specificity evaluation, it was tested with human coronaviruses, human influenza A virus, influenza B viruses, respiratory syncytial virus, and hepatitis B virus, respectively. For sensitivity assay, it was estimated by templates of recombinant plasmid and pseudovirus of SARS-CoV-2 RNA. For clinical assessment, 100 clinical samples (13 positive and 87 negatives for SARS-CoV-2) were tested via quantitative reverse transcription PCR (RT-qPCR) and RT-RAA/LFD, respectively. Results: The limit of detection was 1 copies/µl in RT-RAA/LFD assay, which could be conducted within 30 min at 39°C, without any cross-reaction with other human coronaviruses and clinical respiratory pathogens. Compared with RT-qPCR, the established POCT assay offered 100% specificity and 100% sensitivity in the detection of clinical samples. Conclusion: This work provides a convenient POCT tool for rapid screening, diagnosis, and monitoring of suspected patients in SARS-CoV-2 endemic areas.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Nucleic Acid Testing/instrumentation , Coronavirus Nucleocapsid Proteins/genetics , DNA Primers/genetics , Humans , Phosphoproteins/genetics , Point-of-Care Testing , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/instrumentation , Recombinases/metabolism , Reverse Transcription , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
19.
Transl Neurodegener ; 10(1): 7, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33588936

ABSTRACT

Paroxysmal dyskinesias are a group of neurological diseases characterized by intermittent episodes of involuntary movements with different causes. Paroxysmal kinesigenic dyskinesia (PKD) is the most common type of paroxysmal dyskinesia and can be divided into primary and secondary types based on the etiology. Clinically, PKD is characterized by recurrent and transient attacks of involuntary movements precipitated by a sudden voluntary action. The major cause of primary PKD is genetic abnormalities, and the inheritance pattern of PKD is mainly autosomal-dominant with incomplete penetrance. The proline-rich transmembrane protein 2 (PRRT2) was the first identified causative gene of PKD, accounting for the majority of PKD cases worldwide. An increasing number of studies has revealed the clinical and genetic characteristics, as well as the underlying mechanisms of PKD. By seeking the views of domestic experts, we propose an expert consensus regarding the diagnosis and treatment of PKD to help establish standardized clinical evaluation and therapies for PKD. In this consensus, we review the clinical manifestations, etiology, clinical diagnostic criteria and therapeutic recommendations for PKD, and results of genetic analyses in PKD patients performed in domestic hospitals.


Subject(s)
Chorea/diagnosis , Chorea/therapy , China , Chorea/genetics , Consensus , Dystonia/diagnosis , Dystonia/genetics , Dystonia/therapy , Humans , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics
20.
J Laparoendosc Adv Surg Tech A ; 28(7): 804-810, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29658824

ABSTRACT

AIM: It was aimed to concern about the satisfaction and procedural complications of patients during the thoracoscopy exist of hands-on training in this present study. PATIENTS AND METHODS: The patients with non-small-cell carcinoma underwent video-assisted thoracoscopic surgery (VATS) lobectomy during hands-on training courses at thoracoscopic center in our hospital and collected from January 2009 and December 2014. The rates of satisfaction and complications of patients were compared from hands-on training group and control group. Potential risk factors associated with post-VATS complications of patients and thoracoscopist-related variables were analyzed. There were 54 patients join in six meetings with hands-on thoracoscopy training in our center. RESULTS: There was no significant difference between patients for hands-on training group (n = 54) and control group (n = 54), including sex, age, BMI, smoking, PpoFEV1 and comorbidities. The satisfaction rate and the incidence of complication were similar between the two groups. CONCLUSION: Univariate analyses showed that elder age, heart disease, chronic obstructive pulmonary disease, long operative time, and first-time mentorship were significantly associated with post-VATS complications of patients in hands-on training group. We should pay more attention to the characteristics of patent and the experience of mentor before VATS hands-on training courses.


Subject(s)
Carcinoma, Non-Small-Cell Lung/surgery , Lung Neoplasms/surgery , Patient Satisfaction/statistics & numerical data , Pneumonectomy/education , Postoperative Complications/etiology , Thoracic Surgery, Video-Assisted/education , Adult , Aged , China , Female , Humans , Incidence , Male , Middle Aged , Pneumonectomy/methods , Postoperative Complications/epidemiology , Retrospective Studies , Risk Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...