Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Anal Biochem ; 686: 115413, 2024 03.
Article in English | MEDLINE | ID: mdl-38040174

ABSTRACT

To establish an in vitro biological activity detection method for luteinizing hormone (LH), the hLHCGR-CREB-HEK293 cell line was constructed to stably express human luteinizing hormone/chorionic gonadotropin receptor (hLHCGR). After optimization, the rhLH starting working concentration was 800 mIU/mL with 4-fold serial dilutions, 10 concentrations and an incubation time of 5 h. The method was confirmed to be highly specific, with good accuracy, precision and linearity, meeting the needs of process research and release testing, and can be used as a routine detection method for LH biological activity. With the increasing demand for research and development of rhLH biologically similar drugs, establishing a stable and simple activity assay method to evaluate the biological activity of rhLH can provide technical support for quality control of rhLH products and powerful tools for comparability research of similar products.


Subject(s)
Chorionic Gonadotropin , Luteinizing Hormone , Humans , Genes, Reporter , HEK293 Cells , Luteinizing Hormone/genetics , Pharmaceutical Preparations , Recombinant Proteins , Biological Assay
2.
Adv Mater ; 36(1): e2308314, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37963185

ABSTRACT

Helicenes exhibit substantial potential as circularly polarized luminescence (CPL) active molecules. However, their application in circularly polarized organic light-emitting diodes (CP-OLEDs) is typically hindered by the challenge of integrating both high color purity and efficient triplet-harvesting capability, particularly in the blue spectral region. Herein, a series of hetero[6]helicene-based emitters that is strategically engineered through the helical extension of a deep-blue double-boron-based multiple resonance thermally activated delayed fluorescence (MR-TADF) motif, is introduced. Importantly, the helical extension does not cause apparent structural deformation or perturb frontier molecular orbitals; thus, preserving the deep-blue emission and MR-TADF characteristics of the parent molecule. This approach also leads to reduced reorganization energy, resulting in emitters with narrower linewidth and higher photoluminescence quantum yield. Further, the helical motif enhances the racemization barrier and leads to improved CPL performance with luminescence dissymmetry factor values up to 1.5 × 10-3 . Exploiting these merits, devices incorporating the chiral dopants demonstrate deep-blue emission within the Broadcast Service Television 2020 color-gamut range, record external quantum efficiencies (EQEs) up to 29.3%, and have distinctive circularly polarized electroluminescence (CPEL) signals. Overall, the authors' findings underscore the helical extension as a promising strategy for designing narrowband chiroptical materials and advancing high-definition displays.

3.
Chem Sci ; 14(43): 12246-12254, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37969606

ABSTRACT

Through-space charge transfer (TSCT) has been proven effective for designing thermally activated delayed fluorescence (TADF) emitters due to the separation of the frontier molecular orbitals. Although tuning of the interaction between the donor and acceptor by controlling the conformation is known to be crucial for the photophysical properties of TSCT excited states, it remains a challenge to realize efficient red and deep-red emissions. Herein, we designed two TSCT molecules, namely TPXZ-QX and TPXZ-2QX, by using oxygen-bridged triphenylamine (TPXZ) as the electron donor with enhanced planarity and electron-donating capability. With a face-to-face orientation of the donor and acceptor segments and close π-π contacts, the new emitters have strong intramolecular noncovalent donor-acceptor interactions. The emissions of TPXZ-QX and TPXZ-2QX in doped thin films lie in the red (λmax = 632 nm) to deep-red (λmax = 665 nm) region. The photoluminescence quantum yields are 41% and 32% for TPXZ-QX and TPXZ-2QX, respectively. Organic light-emitting diodes (OLEDs) based on TPXZ-QX and TPXZ-2QX show external quantum efficiencies (EQEs) of up to 13.8% and 11.4%, respectively. This work indicates that the modulation of TSCT excited states based on strong intramolecular cofacial π-stacking interactions is a viable choice for the development of high-efficiency long-wavelength TADF emitters.

4.
Phys Chem Chem Phys ; 25(43): 29603-29613, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37877743

ABSTRACT

"Carbene-metal(I)-amide" (CMA) complexes have garnered significant attention due to their remarkable properties and potential TADF applications in organic electronics. However, the atomistic working mechanism is still elusive. Herein, we chose two CMA complexes, i.e., cyclic (alkyl)(amino) carbene-copper[gold](I)-carbazole (CAAC-Cu[Au]-Cz), and employed both DFT and TD-DFT methods, in combination with radiative and nonradiative rate calculations, to investigate geometric and electronic structures of these two complexes in the ground and excited states, including orbital compositions, electronic transitions, absorption and emission spectra, and the luminescence mechanism. It is found that the coplanar or perpendicular conformations are coexistent in the ground state (S0), the lowest excited singlet state (S1), and the triplet state (T1). Both the coplanar and perpendicular S1 and T1 states have similar ligand-to-ligand charge transfer (LLCT) character between CAAC and Cz, and some charge-transfer character between metal atoms and ligands, which is beneficial to minimize the singlet-triplet energy gaps (ΔEST) and increase the spin-orbit coupling (SOC). An interesting three-state (S0, S1, T1) model involving two regions (coplanar and perpendicular) is proposed to rationalize the experimental TADF phenomena in the CMA complexes. In addition to the coplanar ones, the perpendicular S1 and T1 states also play a role in promoting the repopulation of the coplanar S1 exciton, which is a primary source for the delayed fluorescence.

5.
Angew Chem Int Ed Engl ; 62(49): e202310943, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37851366

ABSTRACT

B- and N-embedded multiple resonance (MR) type thermally activated delayed fluorescence (TADF) emitters usually suffer from slow reverse intersystem crossing (RISC) process and aggregation-caused emission quenching. Here, we report the design of a sandwich structure by placing the B-N MR core between two electron-donating moieties, inducing through-space charge transfer (TSCT) states. The proper adjusting of the energy levels brings about a 10-fold higher RISC rate in comparison with the parent B-N molecule. In the meantime, a high photoluminescence quantum yield of 91 % and a good color purity were maintained. Organic light-emitting diodes based on the new MR emitter achieved a maximum external quantum efficiency of 31.7 % and small roll-offs at high brightness. High device efficiencies were also obtained for a wide range of doping concentrations of up to 20 wt % thanks to the steric shielding of the B-N core. A good operational stability with LT95 of 85.2 h has also been revealed. The dual steric and electronic effects resulting from the introduction of a TSCT state offer an effective molecular design to address the critical challenges of MR-TADF emitters.

6.
Environ Sci Pollut Res Int ; 30(46): 103291-103312, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37684508

ABSTRACT

Sustainable livelihoods (SL) have emerged as a crucial area of focus in global environmental change research, aligning with the Sustainable Development Goals (SDGs). This field is rapidly gaining prominence in sustainability science and has become one of the primary research paradigms. In our study, we conducted scientometrics analysis using the ISI Web of Science core collection database to examine research patterns and frontier areas in SL research. We selected 6441 papers and 265,759 references related to SL published from 1991 to 2020. To achieve this, we employed advanced quantitative analysis tools such as CiteSpace and VOSviewer to quantitatively analyze and visualize the evolution of literature in the SL research field. Our overarching objectives were to understand historical research characteristics, identify the knowledge base, and determine future research trends. The results revealed an exponential increase in SL research documentation since 1991, with the Consortium of International Agricultural Research Center (CGIAR) contributing the highest volume of research documents and citations. Key journals in this field included World Development, Global Environmental Change, Ecological Economics, and Ecology and Society. Notably, Singh RK and Shackleton CM emerged as prolific authors in SL research. Through our analysis, we identified six primary clusters of research areas: livelihoods, conservation, food security, management, climate change, and ecosystem services. Additionally, we found that tags such as rural household, agricultural intensification, cultural intensification, and livelihoods vulnerability remained relevant and represented active research hotspots. By analyzing keyword score relevance, we identified frontier areas in SL research, including mass tourism, solar home systems, artisanal and small-scale mining, forest quality, marine-protected areas, agricultural sustainability, sustainable rangeland management, and indigenous knowledge. These findings provide valuable insights to stakeholders regarding the historical, current, and future trends in SL research, offering strategic opportunities to enhance the sustainability of livelihoods for farmers and rural communities in alignment with the SDGs.


Subject(s)
Conservation of Natural Resources , Ecosystem , Conservation of Natural Resources/methods , Agriculture/methods , Sustainable Development , Family Characteristics
7.
Sci Adv ; 9(24): eadh0198, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37315147

ABSTRACT

Transition metal complexes exhibiting thermally activated delayed fluorescence (TADF) remain underdeveloped for organic light-emitting diodes (OLEDs). Here, we describe a design of TADF Pd(II) complexes featuring metal-perturbed intraligand charge-transfer excited states. Two orange- and red-emitting complexes with efficiencies of 82 and 89% and lifetimes of 2.19 and 0.97 µs have been developed. Combined transient spectroscopic and theoretical studies on one complex reveal a metal-perturbed fast intersystem crossing process. OLEDs using the Pd(II) complexes show maximum external quantum efficiencies of 27.5 to 31.4% and small roll-offs down to 1% at 1000 cd m-2. Moreover, the Pd(II) complexes show exceptional operational stability with LT95 values over 220 hours at 1000 cd m-2, benefiting from the use of strong σ-donating ligands and the presence of multiple intramolecular noncovalent interactions beside their short emission lifetimes. This study demonstrates a promising approach for developing efficient and robust luminescent complexes without using the third-row transition metals.

8.
Heliyon ; 8(10): e10704, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36203909

ABSTRACT

Grassland degradation has become a global social-ecological problem, which seriously limits the sustainability of indigenous people's livelihoods. Bibliometrics, a type of analysis based on the Science Citation Index-Expanded (SCI-E), was therefore performed to explore the research trends and focus areas of studies on sustainable livelihoods (SLs). We conducted an in-depth analysis of 489 research publications and their 25,144 references from 1991 to 2020. The results show that only few papers have been published, but the number of countries and research institutions involved shows an overall imbalance. We identified eight main clusters based on keyword co-occurrence, these being studies the content of which is an important representation of current research directions in this topic. The document co-citation analysis revealed 10 research clusters, representing the frontiers of research. Clusters included the following topics: NPP (Net Primary Productivity) dynamics, global change, ecological restoration, risk indicators, livelihood strategies, smallholder systems, drought relief, sustainable land management and common pool resources. We reviewed and interpreted these clusters in depth with a view to provide an up-to-date account of the dynamics of this research. As the first scientometric evaluation of research on sustainable livelihoods in grassland ecosystems, this study provides several theoretical and practical implications for global poverty eradication research, which are of great scientific value for global sustainable development.

9.
Chemistry ; 28(67): e202202439, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36065000

ABSTRACT

Two-coordinate donor-metal-acceptor type coinage metal complexes displaying efficient thermally activated delayed fluorescence (TADF) have been unveiled to be highly appealing candidates as emitters for organic light-emitting diodes (OLEDs). Herein a series of green to yellow TADF gold(I) complexes with alkynyl ligands has been developed for the first time. The complexes exhibit high photoluminescence quantum yields (PLQYs) of up to 0.76 in doped films (5 wt % in PMMA) at room temperature. The modifications of alkynyl ligands with electron-donating amino groups together with the use of electron-deficient carbene ligands induce ligand-to-ligand charge transfer excited states that give rise to TADF emission. Spectroscopic and density functional theory (DFT) calculations reveal the roles of electron-donating capability of the alkynyl ligand in tuning the excited-state properties. Solution-processed organic light-emitting diodes (OLEDs) using the present complexes as emitters achieve maximum external quantum efficiency (EQE) of up to 20 %.

10.
Chemistry ; 28(63): e202201782, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-35969217

ABSTRACT

A dinuclear Pt(II) compound was reported to exhibit thermally activated delayed fluorescence (TADF); however, the luminescence mechanism remains elusive. To reveal relevant excited-state properties and luminescence mechanism of this Pt(II) compound, both density function theory (DFT) and time-dependent DFT (TD-DFT) calculations were carried out in this work. In terms of the results, the S1 and T2 states show mixed intraligand charge transfer (ILCT)/metal-to-ligand CT (MLCT) characters while the T1 state exhibits mixed ILCT/ligand-to-metal CT (LMCT) characters. Mechanistically, a four-state (S0 , S1 , T1 , and T2 ) model is proposed to rationalize the TADF behavior. The reverse intersystem crossing (rISC) process from the initial T1 to final S1 states involves two up-conversion channels (direct T1 →S1 and T2 -mediated T1 →T2 →S1 pathways) and both play crucial roles in TADF. At 300 K, these two channels are much faster than the T1 phosphorescence emission enabling TADF. However, at 80 K, these rISC rates are reduced by several orders of magnitude and become very small, which blocks the TADF emission; instead, only the phosphorescence is observed. These findings rationalize the experimental observation and could provide useful guidance to rational design of organometallic materials with superior TADF performances.

11.
Front Plant Sci ; 13: 947279, 2022.
Article in English | MEDLINE | ID: mdl-35991446

ABSTRACT

As global change continues to intensify, the mode and rate of nitrogen input from the atmosphere to grassland ecosystems had changed dramatically. Firstly, we conducted a systematic analysis of the literature on the topic of nitrogen deposition impacts over the past 30 years using a bibliometric analysis. A systematic review of the global research status, publication patterns, research hotspots and important literature. We found a large number of publications in the Chinese region, and mainly focuses on the field of microorganisms. Secondly, we used a meta-analysis to focus on microbial changes using the Chinese grassland ecosystem as an example. The results show that the research on nitrogen deposition in grassland ecosystems shows an exponential development trend, and the authors and research institutions of the publications are mainly concentrated in China, North America, and Western Europe. The keyword clustering results showed 11 important themes labeled climate change, elevated CO2, species richness and diversity, etc. in these studies. The burst keyword analysis indicated that temperature sensitivity, microbial communities, etc. are the key research directions. The results of the meta-analysis found that nitrogen addition decreased soil microbial diversity, and different ecosystems may respond differently. Treatment time, nitrogen addition rate, external environmental conditions, and pH had major effects on microbial alpha diversity and biomass. The loss of microbial diversity and the reduction of biomass with nitrogen fertilizer addition will alter ecosystem functioning, with dramatic impacts on global climate change. The results of the study will help researchers to further understand the subject and have a deep understanding of research hotspots, which are of great value to future scientific research.

12.
ACS Appl Mater Interfaces ; 14(11): 13539-13549, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35286066

ABSTRACT

Carbene-Au-amide (CMA) type complexes, in which the amide and carbene ligands act as an electron donor (D) and acceptor (A), respectively, can exhibit strong delayed fluorescence (DF) from a ligand to ligand charge transfer (LLCT) excited state. Although the coplanar donor-acceptor (D-A) conformation has been suggested to be a crucial factor favoring radiative decay of the charge-transfer excited state, the geometric structural factor underpinning the excited-state mechanism of CMA complexes remains an open question. We herein develop a new class of carbene-Au-carbazolate complexes by introducing large aromatic substituents onto the carbazolate ligand, the presence of which are conceived to restrict the rotation of the Au-N bond and thus confine a twisted D-A conformation in both ground and excited states. A highly twisted D-A orientation is found for the complexes in their crystal structures. Photophysical studies reveal that the twisted conformation induces a decrease in the gap (ΔEST) between the lowest singlet excited state (S1) and the triplet manifold (T1) and thus a faster reverse intersystem crossing (RISC) from T1 to S1 at the expense of oscillator strength for an S1 radiative transition. In comparison with the coplanar analogue, the twisted complexes exhibit comparable or improved DF with quantum yields of up to 94% and short emission lifetimes down to sub-microseconds. The tuning of excited-state dynamics has been well interpreted by density functional theory (DFT) and time-dependent DFT (TDDFT) calculations, which unveil much faster RISC rates for twisted complexes. Solution-processed organic light-emitting diodes (OLEDs) based on the new CMA complexes show promising performances with almost negligible efficiency rolloff at a brightness of 1000 cd m-2. This work implies that neither a coplanar ground-state D-A conformation nor a dynamic rotation of the M-N bond is the key to the realization of efficient DF for CMA complexes.

13.
Inorg Chem ; 61(20): 7673-7681, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35200011

ABSTRACT

Herein we investigated the luminescence mechanism of one "carbene-metal-amide" copper compound with thermally activated delayed fluorescence (TADF) using density functional theory (DFT)/multireference configuration interaction, DFT, and time-dependent DFT methods with the polarizable continuum model. The experimentally observed low-energy absorption and emission peaks are assigned to the S1 state, which exhibits clear interligand and partial ligand-to-metal charge-transfer character. Moreover, it was found that a three-state (S0, S1, and T1) model is sufficient to describe the TADF mechanism, and the T2 state should play a negligible role. The calculated S1-T1 energy gap of 0.10 eV and proper spin-orbit couplings facilitate the reverse intersystem crossing (rISC) from T1 to S1. At 298 K, the rISC rate of T1 → S1 (∼106 s-1) is more than 3 orders of magnitude larger than the T1 phosphorescence rate (∼103 s-1), thereby enabling TADF. However, it disappears at 77 K because of a very slow rISC rate (∼101 s-1). The calculated TADF rate, lifetime, and quantum yield agree very well with the experimental data. Methodologically, the present work shows that only considering excited-state information at the Franck-Condon point is insufficient for certain emitting systems and including excited-state structure relaxation is important.

14.
Chemistry ; 27(71): 17834-17842, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34705307

ABSTRACT

Metal-based thermally activated delayed fluorescence (TADF) is conceived to inherit the advantages of both phosphorescent metal complexes and purely organic TADF compounds for high-performance electroluminescence. Herein a panel of new TADF Au(I) emitters has been designed and synthesized by using carbazole and pyrazine-fused nitrogen-heterocyclic carbene (NHC) as the donor and acceptor ligands, respectively. Single-crystal X-ray structures show linear molecular shape and coplanar arrangement of the donor and acceptor with small dihedral angles of <6.5°. The coplanar orientation and appropriate separation of the HOMO and LUMO in this type of molecules favour the formation of charge-transfer excited state with appreciable oscillator strength. Together with a minor but essential heavy atom effect of Au ion, the complexes in doped films exhibit highly efficient (Φ∼0.9) and short-lived (<1 µs) green emissions via TADF. Computational studies on this class of emitters have been performed to decipher the key reverse intersystem crossing (RISC) pathway. In addition to a small energy splitting between the lowest singlet and triplet excited states (ΔEST ), the spin-orbit coupling (SOC) effect is found to be larger at a specific torsion angle between the donor and acceptor planes which favours the RISC process the most. This work provides an alternative molecular design to TADF Au(I) carbene emitters for OLED application.

15.
J Phys Chem Lett ; 12(25): 5944-5950, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34156849

ABSTRACT

The Pd complex PdN3N exhibits an unusual dual emission of room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF), but the mechanism is elusive. Herein, we employed both density functional theory (DFT) and time-dependent DFT (TD-DFT) methods to explore excited-state properties of this Pd complex, which shows that the S0, S1, T1, and T2 states are involved in the luminescence. Both the S1 → T1 and S1 → T2 intersystem crossing (ISC) processes are more efficient than the S1 fluorescence and insensitive to temperature. However, the direct T1 → S1 and T2-mediated T1 → T2 → S1 reverse ISC (rISC) processes change remarkably with temperature. At 300 K, these two processes are more efficient than the T1 phosphorescence and therefore enable TADF. Importantly, the T1 → S1 rISC and T1 phosphorescence rates are comparable at 300 K, which leads to dual emissions of TADF and RTP, whereas these two channels become blocked at 100 K so that only the T1 phosphorescence is recorded experimentally.


Subject(s)
Coordination Complexes/chemistry , Density Functional Theory , Fluorescence , Palladium/chemistry , Temperature , Models, Molecular , Molecular Conformation
16.
Phys Chem Chem Phys ; 23(2): 1464-1474, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33399139

ABSTRACT

A systematic study on applied electric field effects (Eapp) on electron transfer along the peptides is very important for the regulation of electron transfer behaviors so as to realize the functions of proteins. In this work, we computationally investigated the uphill migration behaviors of excess electrons along the peptide chains under Eapp using the density functional theory method. We examined the electronic property changes of the model α-helical oligopeptides, the dynamics behavior of an excess electron along the peptide chains under Eapp opposite to the internal dipole field of peptides. We found that Eapp of different intensities can effectively modulate the electron-binding abilities, Frontier molecular orbital (FMO) energies and distributions, dipole moments and other corresponding properties with different degrees. The electron-binding abilities of α-helical oligopeptides revealed by vertical electron affinity and FMO energies decrease in weak Eapp and then increase greatly in high Eapp, while the dipole moments change mildly in weak Eapp and increase significantly until a threshold and then become gentle in high Eapp. Analysis of FMO and electron distributions indicates that an excess electron can migrate uphill from the N-terminus to the C-terminus of the α-helical peptides in an irregular jump mode as Eapp linearly increases. Another interesting finding is that α-helical peptides with diverse chain lengths have different sensitivities to Eapp. The longer the peptide is, the more obvious the effects of Eapp are. Additionally, compared to the Eapp effect on linear oligopeptides, we summarized the systematic rule about the Eapp effect on excess electron migration uphill along the peptide chains. Clearly, this work not only enriches the information of the Eapp effect on electronic properties and electron transfers in the helical peptides, but also provides a new perspective for modulating electron migration behaviors in protein electronics engineering.


Subject(s)
Electrons , Oligopeptides/chemistry , Density Functional Theory , Electricity , Models, Chemical , Protein Conformation, alpha-Helical
17.
J Phys Chem Lett ; 11(7): 2470-2476, 2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32150415

ABSTRACT

We have employed the QM(CASPT2//CASSCF)/MM method to explore the excited-state isomerization and decay mechanism of a single-bond-rotation locked photoactive yellow protein (PYP) chromophore in wild-type and mutant proteins. The S1 state is a spectroscopically bright state in the Franck-Condon region. In this state, there exist two excited-state isomerization pathways separately related to the clockwise and anticlockwise rotations of the C=C bond. The clockwise path is favorable because of a small barrier of 2 kcal/mol and uses a novel bicycle-pedal unidirectional photoisomerization mechanism in which the involved two dihedral angles rotate asynchronously because of the reinforced hydrogen-bonding interaction between the chromophore and Cys69. Near the twisted S1 minimum, the chromophore hops to the S0 state via the S1/S0 conical intersection. Finally, the R52A mutation has small effects on the excited-state properties and photoisomerization of the locked PYP chromophore. The present work provides new insights for understanding the photochemistry of PYP chromophores in protein surroundings.


Subject(s)
Bacterial Proteins/chemistry , Photoreceptors, Microbial/chemistry , Propionates/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/radiation effects , Coumaric Acids , Hydrogen Bonding , Isomerism , Models, Chemical , Mutation , Photochemical Processes , Photoreceptors, Microbial/genetics , Photoreceptors, Microbial/radiation effects , Propionates/radiation effects , Quantum Theory , Stereoisomerism , Thermodynamics
18.
Chemphyschem ; 20(11): 1497-1507, 2019 06 04.
Article in English | MEDLINE | ID: mdl-30912277

ABSTRACT

Migration of an excess electron along linear oligopeptides governed by the external electric field (Eex ) which is against the inner dipole electric field is theoretically investigated, including the effects of Eex on the structural and electronic properties of electron migration. Two structural properties including electron-binding ability and the dipole moment of linear oligopeptides are sensitive to the Eex values and can be largely modulated by Eex due to the competition of Eex and the inner electric field and electron transfer caused by Eex . In the case of low Eex values, two structural properties decrease slightly, while for high Eex values, the electron-binding ability continually increases strongly, with dipole moments firstly increasing significantly and then increasing more slowly at higher Eex . Additionally, linear oligopeptides of different chain lengths influence the modulation extent of Eex and the longer the chain length is, the more sensitive modulation of Eex is. In addition, electronic properties represented by electron spin densities and singly occupied molecular orbital distributions vary with Eex intensities, leading to an unusual electron migration behavior. As Eex increases, an excess electron transfers from the N-terminus to the C-terminus and jumps over a neighboring dipole unit of two termini to other units, respectively, instead of transferring by means of a one-by-one dipole unit hopping mechanism. These findings not only promote a deeper understanding of the connection between Eex and structural and electronic properties of electron transfer behavior in peptides, but also provide a new insight into the modulation of electron migration along the oligopeptides.


Subject(s)
Nonlinear Dynamics , Oligopeptides/chemistry , Electricity , Electron Transport , Electrons , Quantum Theory
19.
J Comput Chem ; 40(9): 988-996, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30451309

ABSTRACT

The relay stations play a significant role in long-range charge hopping transfer in proteins. Although studies have clarified that many more protein structural motifs can function as relays in charge hopping transfers by acting as intermediate charge carriers, the relaying properties are still poorly understood. In this work, taking a ß-turn oligopeptide as an example, we report a dynamic character of a relay with tunable relaying properties using the density functional theory calculations. Our main finding is that a ß-turn peptide can serve as an effective electron relay in facilitating long-range electron migration and its relay properties is vibration-tunable. The vibration-induced structural transient distortions remarkably affect the lowest occupied molecular orbital (LUMO) energy, vertical electron affinity and electron-binding mode of the ß-turn oligopeptide and the singly occupied molecular orbital (SOMO) energy of the corresponding electron adduct and thus the relaying properties. Different vibration modes lead to different structural distortions and thus have different effects on the relaying properties and ability of the ß-turn peptide. For the relaying properties, there approximately is a linear negative correlation of electron affinity with the LUMO energy of the ß-turn or the SOMO energy of its electron adduct. Besides, such relaying properties also vary in the vibration evolution process, and the electron-binding modes may be tunable. As an important addition to the known static charge relaying properties occurring in various protein structural motifs, this work reports the dynamic electron-relaying characteristics of a ß-turn oligopeptide with variable relaying properties governed by molecular vibrations which can be applied to different proteins in mediating long-range charge transfers. Clearly, this work reveals molecular vibration effects on the electron relaying properties of protein structural motifs and provides new insights into the dynamics of long-range charge transfers in proteins. © 2018 Wiley Periodicals, Inc.


Subject(s)
Density Functional Theory , Peptides/chemistry , Electron Transport , Protein Structure, Secondary
20.
Toxicology ; 381: 39-50, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28238930

ABSTRACT

This study is aimed to investigate the inflammation and neurological dysfunction induced by tetrachloro-p-benzoquinone (TCBQ) through Toll-like receptor 4 (TLR4) signaling. We also investigated the protective role of melatonin as an antioxidant and anti-inflammatory agent. In vitro model was established by rat pheochromocytoma PC12 cells, meanwhile, TLR4 wild-type (C57BL/6) and knockout mice (C57BL/10ScNJ TLR4-/-) were used as in vivo model. In vitro study showed TCBQ exposure enhanced the expression of TLR4, myeloid differentiation factor 88 (MyD88) at both transcriptional and post-transcriptional levels. By contrast, melatonin decreased TLR4 and MyD88 expressions. Moreover, our result indicated that melatonin disrupted the formation of TLR4/MyD88/MD2/CD14 complex. In addition, melatonin terminated TCBQ-mediated phosphorylation of c-Jun N-terminal kinase (JNK), p38, and extracellular regulated protein kinase (ERK) signaling and hampered its downstream pro-inflammatory cytokine releases. In vivo result also indicated TLR4 deficiency partially protected against TCBQ-induced morphological and neuropathological changes in mice brain, suggested the role of TLR4. In conclusion, melatonin modulates TCBQ-mediated inflammatory genes through TLR4/MyD88-dependent signaling pathway. Our current study, to the best of our knowledge, is the first time show melatonin not only disrupt the binding of TLR4 and MyD88, but also restricted the formation of TLR4/MD2/CD14 complex, suggesting that melatonin supplementary may represent a valuable therapeutic strategy for inflammatory neurological dysfunction.


Subject(s)
Chloranil/toxicity , Inflammation/drug therapy , Melatonin/pharmacology , Nervous System Diseases/drug therapy , Toll-Like Receptor 4/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation , Inflammation/chemically induced , Inflammation/pathology , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , Lipopolysaccharide Receptors/genetics , Lipopolysaccharide Receptors/metabolism , Lymphocyte Antigen 96/genetics , Lymphocyte Antigen 96/metabolism , MAP Kinase Signaling System , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Nervous System Diseases/chemically induced , Phosphorylation , Signal Transduction , Toll-Like Receptor 4/deficiency , Toll-Like Receptor 4/genetics , Toxicity Tests, Acute
SELECTION OF CITATIONS
SEARCH DETAIL
...