Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(13)2023 07 03.
Article in English | MEDLINE | ID: mdl-37443803

ABSTRACT

Gram-negative bacterial infections pose a significant threat to public health. Toll-like receptor 4 (TLR4) recognizes bacterial lipopolysaccharide (LPS) and induces innate immune responses, autophagy, and cell death, which have major impacts on the body's physiological homeostasis. However, the role of TLR4 in bacterial LPS-induced autophagy and apoptosis in large mammals, which are closer to humans than rodents in many physiological characteristics, remains unknown. So far, few reports focus on the relationship between TLR, autophagy, and apoptosis in large mammal levels, and we urgently need more tools to further explore their crosstalk. Here, we generated a TLR4-enriched mammal model (sheep) and found that a high-dose LPS treatment blocked autophagic degradation and caused strong innate immune responses and severe apoptosis in monocytes/macrophages of transgenic offspring. Excessive accumulation of autophagosomes/autolysosomes might contribute to LPS-induced apoptosis in monocytes/macrophages of transgenic animals. Further study demonstrated that inhibiting TLR4 downstream NF-κB or p38 MAPK signaling pathways reversed the LPS-induced autophagy activity and apoptosis. These results indicate that the elevated TLR4 aggravates LPS-induced monocytes/macrophages apoptosis by leading to lysosomal dysfunction and impaired autophagic flux, which is associated with TLR4 downstream NF-κB and MAPK signaling pathways. This study provides a novel TLR4-enriched mammal model to study its potential effects on autophagy activity, inflammation, oxidative stress, and cell death. These findings also enrich the biological functions of TLR4 and provide powerful evidence for bacterial infection.


Subject(s)
Lipopolysaccharides , NF-kappa B , Humans , Animals , Sheep , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Toll-Like Receptor 4/metabolism , Apoptosis , Mammals/metabolism , Autophagy
2.
Endocr Connect ; 10(9): 980-994, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34319906

ABSTRACT

Insulin-like growth factor 1 (IGF1), also known as somatomedin C, is essential for the regulation of animal growth and development. In many species, the IGF1 gene can be alternatively spliced into multiple transcripts, encoding different pre-pro-IGF1 proteins. However, the exact alternative splicing patterns of IGF1 and the sequence information of different splice variants in sheep are still unclear. In this study, four splice variants (class 1-Ea, class 1-Eb, class 2-Ea, and class 2-Eb) were obtained, but no IGF1 Ec, similar to that found in other species, was discovered. Bioinformatics analysis showed that the four splice variants shared the same mature peptide (70 amino acids) and possessed distinct signal peptides and E peptides. Tissue expression analysis indicated that the four splice variants were broadly expressed in all tested tissues and were most abundantly expressed in the liver. In most tissues and stages, the expression of class 1-Ea was highest, and the expression of other splice variants was low. Overall, levels of the four IGF1 splice variants at the fetal and lamb stages were higher than those at the adult stage. Overexpression of the four splice variants significantly increased fibroblast proliferation and inhibited apoptosis (P < 0.05). In contrast, silencing IGF1 Ea or IGF1 Eb with siRNA significantly inhibited proliferation and promoted apoptosis (P < 0.05). Among the four splice variants, class 1-Ea had a more evident effect on cell proliferation and apoptosis. In summary, the four ovine IGF1 splice variants have different structures and expression patterns and might have different biological functions.

3.
Front Cell Dev Biol ; 8: 248, 2020.
Article in English | MEDLINE | ID: mdl-32432106

ABSTRACT

Toll-like receptor 4 (TLR4) is a critical pattern recognition receptor that plays a critical role in the host innate immune system's recognition of Gram-negative bacteria. Since it is the lipopolysaccharide (LPS) receptor, it links the activated inflammatory response with autophagy and oxidative stress. Autophagy, or type II programmed cell death, was reported to have defensive functions in response to the production of inflammatory cytokines and oxidative stress. To explore the relationship between autophagy, inflammation, and oxidative stress, a TLR4-enriched transgenic (Tg) animal model (sheep) was generated. Autophagy activity in the Tg blood monocytes was significantly higher than in the wild-type animal under LPS stress, and it returned to normal after transfection of TLR4 siRNA. Pretreatment with 3-methyladenine (3-MA) inhibited autophagy and enhanced oxidative stress and the production of TNF-α. The LPS-induced reactive oxygen species (ROS) level was markedly increased in the Tg group at an early stage before quickly returning to normal values. In addition, suppressing ROS production by N-acetyl-L-cysteine down-regulated the number of intracellular autophagosomes and the expression of Beclin-1, ATG5, and cytokines IL-1ß, IL-6, and TNF-α. Further mechanistic investigation suggested that the TLR4-associated p38 mitogen-activated protein kinase (MAPK) signaling pathway was involved in autophagy and oxidative stress. P38 MAPK promotes intracellular autophagy, ROS production, and inflammatory response. Moreover, TLR4 over-expression suppressed oxidative stress and the production of inflammatory cytokines and increased autophagy activity in vivo. Taken together, our results showed that LPS induced autophagy, which was related to TLR4-mediated ROS production through the p38 MAPK signaling pathway. In addition, our study also provided a novel transgenic animal model to analyze the effects of TLR4 on autophagy, oxidative stress, and inflammatory responses.

4.
Theriogenology ; 96: 103-110, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28532825

ABSTRACT

Genetic modification provides a means to enhancing disease resistance in animals. Toll-like receptor 4 (TLR4), a member of the TLR family, is critical for the recognition of lipopolysaccharide (LPS)/endotoxin from Gram-negative bacteria by host immune cells, which initiates cell activation and subsequently triggers a proinflammatory response to the invading pathogens. In this study, the first generation of genetically modified (GM) sheep overexpressing TLR4 was produced by microinjection for better disease resistance. Compared with wild-type (WT) rams, the GM rams have similar growth performance, basic semen quality and spermatozoon ultrastructure. The offspring birth rates after cervical artificial insemination were also similar between GM (90.32%) and WT (92.38%) rams. Overall, the presence and expression of the TLR4 transgene in the genome did not appear to interfere with normal semen production, reproductive traits and the ability of transgene transmission to offspring. The expression levels of TLR4, tumor necrosis factor and interferon gamma genes in monocyte/macrophages from GM sheep were significantly higher than that from WT sheep at early stages after LPS stimulation. The GM offspring born from the founder transgenic ram inseminated ewes had similar survival rate with WT offspring (88.89% vs 84.86%) at weaning. The TLR4 transgene showed no deleterious effects on growth performance, reproductive traits and offspring survivability of GM rams. Therefore, the GM sheep overexpressing TLR4 provide a powerful experimental model for analyzing function of TLR4 in vivo during infection and inflammation.


Subject(s)
Animals, Genetically Modified , Sheep/genetics , Sheep/physiology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Animals , Longevity , Semen Preservation
SELECTION OF CITATIONS
SEARCH DETAIL
...