Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 362
Filter
1.
Molecules ; 29(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38731576

ABSTRACT

In order to reduce the waste of Akebia trifoliata peel and maximize its utilization, in this study, on the basis of a single-factor experiment and the response surface method, the optimum technological conditions for the extraction of soluble dietary fiber from Akebia trifoliata peel with the compound enzyme method were obtained. The chemical composition, physical and chemical properties, structural characterization and biological activity of the purified soluble dietary fiber (AP-SDF) from the Akebia trifoliata peel were analyzed. We discovered that that the optimum yield was 20.87% under the conditions of cellulase addition 600 U/g, enzymolysis time 100 min, solid-liquid ratio 1:24 g/mL and enzymolysis temperature 51 °C. At the same time, AP-SDF was a porous network structure cellulose type I acidic polysaccharose mainly composed of arabinoxylan (36.03%), galacturonic acid (27.40%) and glucose (19.00%), which possessed the structural characteristic peaks of the infrared spectra of polysaccharides and the average molecular weight (Mw) was 95.52 kDa with good uniformity. In addition, the AP-SDF exhibited high oil-holding capacity (15.11 g/g), good water-holding capacity and swelling capacity, a certain antioxidant capacity in vitro, hypoglycemic activity in vitro for α-glucosidase inhibition and hypolipidemic activity in vitro for the binding ability of bile acids and cholesterol. These results will provide a theoretical basis for the development of functional products with antioxidant, hypoglycemic and hypolipidemic effects, which have certain application value in related industries.


Subject(s)
Dietary Fiber , Dietary Fiber/analysis , Antioxidants/chemistry , Antioxidants/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Solubility , Cellulase/chemistry , Cellulase/metabolism , Molecular Weight , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification
2.
Environ Int ; 186: 108632, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38583296

ABSTRACT

Plastic fragments are widely found in the soil profile of terrestrial ecosystems, forming plastic footprint and posing increasing threat to soil functionality and carbon (C) footprint. It is unclear how plastic footprint affects C cycling, and in particularly permanent C sequestration. Integrated field observations (including 13C labelling) were made using polyethylene and polylactic acid plastic fragments (low-, medium- and high-concentrations as intensifying footprint) landfilling in soil, to track C flow along soil-plant-atmosphere continuum (SPAC). The result indicated that increased plastic fragments substantially reduced photosynthetic C assimilation (p < 0.05), regardless of fragment degradability. Besides reducing C sink strength, relative intensity of C emission increased significantly, displaying elevated C source. Moreover, root C fixation declined significantly from 21.95 to 19.2 mg m-2, and simultaneously root length density, root weight density, specific root length and root diameter and surface area were clearly reduced. Similar trends were observed in the two types of plastic fragments (p > 0.05). Particularly, soil aggregate stability was significantly lowered as affected by plastic fragments, which accelerated the decomposition rate of newly sequestered C (p < 0.05). More importantly, net C rhizodeposition declined averagely from 39.77 to 29.41 mg m-2, which directly led to significant decline of permanent C sequestration in soil. Therefore, increasing plastic footprint considerably worsened C footprint regardless of polythene and biodegradable fragments. The findings unveiled the serious effects of plastic residues on permanent C sequestration across SPAC, implying that current C assessment methods clearly overlook plastic footprint and their global impact effects.


Subject(s)
Carbon Footprint , Plastics , Soil , Soil/chemistry , Carbon/analysis , Atmosphere/chemistry , Carbon Cycle , Ecosystem , Plants , Carbon Sequestration , Environmental Monitoring/methods
3.
Sci Transl Med ; 16(743): eadk5395, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630847

ABSTRACT

Endoscopy is the primary modality for detecting asymptomatic esophageal squamous cell carcinoma (ESCC) and precancerous lesions. Improving detection rate remains challenging. We developed a system based on deep convolutional neural networks (CNNs) for detecting esophageal cancer and precancerous lesions [high-risk esophageal lesions (HrELs)] and validated its efficacy in improving HrEL detection rate in clinical practice (trial registration ChiCTR2100044126 at www.chictr.org.cn). Between April 2021 and March 2022, 3117 patients ≥50 years old were consecutively recruited from Taizhou Hospital, Zhejiang Province, and randomly assigned 1:1 to an experimental group (CNN-assisted endoscopy) or a control group (unassisted endoscopy) based on block randomization. The primary endpoint was the HrEL detection rate. In the intention-to-treat population, the HrEL detection rate [28 of 1556 (1.8%)] was significantly higher in the experimental group than in the control group [14 of 1561 (0.9%), P = 0.029], and the experimental group detection rate was twice that of the control group. Similar findings were observed between the experimental and control groups [28 of 1524 (1.9%) versus 13 of 1534 (0.9%), respectively; P = 0.021]. The system's sensitivity, specificity, and accuracy for detecting HrELs were 89.7, 98.5, and 98.2%, respectively. No adverse events occurred. The proposed system thus improved HrEL detection rate during endoscopy and was safe. Deep learning assistance may enhance early diagnosis and treatment of esophageal cancer and may become a useful tool for esophageal cancer screening.


Subject(s)
Deep Learning , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Precancerous Conditions , Humans , Middle Aged , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/epidemiology , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/pathology , Prospective Studies , Precancerous Conditions/pathology
4.
Environ Int ; 185: 108488, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38359550

ABSTRACT

Inorganic trivalent arsenic (iAsⅢ) at environmentally relevant levels has been found to cause developmental toxicity. Maternal exposure to iAsⅢ leads to enduring hepatic lipid deposition in later adult life. However, the exact mechanism in iAsⅢ induced hepatic developmental hazards is still unclear. In this study, we initially found that gestational exposure to iAsⅢ at an environmentally relevant concentration disturbs lipid metabolism and reduces levels of alpha-ketoglutaric acid (α-KG), an important mitochondrial metabolite during the citric acid cycle, in fetal livers. Further, gestational supplementation of α-KG alleviated hepatic lipid deposition caused by early-life exposure to iAsⅢ. This beneficial effect was particularly pronounced in female offspring. α-KG partially restored the ß-oxidation process in hepatic tissues by hydroxymethylation modifications of carnitine palmitoyltransferase 1a (Cpt1a) gene during fetal development. Insufficient ß-oxidation capacities probably play a crucial role in hepatic lipid deposition in adulthood following in utero arsenite exposure, which can be efficiently counterbalanced by replenishing α-KG. These results suggest that gestational administration of α-KG can ameliorate hepatic lipid deposition caused by iAsⅢ in female adult offspring partially through epigenetic reprogramming of the ß-oxidation pathway. Furthermore, α-KG shows potential as an interventive target to mitigate the harmful effects of arsenic-induced hepatic developmental toxicity.


Subject(s)
Arsenic Poisoning , Arsenic , Arsenicals , Humans , Adult , Female , Arsenic/toxicity , Arsenic/metabolism , Ketoglutaric Acids/metabolism , Ketoglutaric Acids/pharmacology , Arsenicals/metabolism , Arsenic Poisoning/metabolism , Liver , Dietary Supplements , Epigenesis, Genetic , Lipids
5.
Int J Med Sci ; 21(1): 61-69, 2024.
Article in English | MEDLINE | ID: mdl-38164345

ABSTRACT

Background: Primary biliary cholangitis (PBC) is a rare autoimmune liver disease with few effective treatments and a poor prognosis, and its incidence is on the rise. There is an urgent need for more targeted treatment strategies to accurately identify high-risk patients. The use of stochastic survival forest models in machine learning is an innovative approach to constructing a prognostic model for PBC that can improve the prognosis by identifying high-risk patients for targeted treatment. Method: Based on the inclusion and exclusion criteria, the clinical data and follow-up data of patients diagnosed with PBC-associated cirrhosis between January 2011 and December 2021 at Taizhou Hospital of Zhejiang Province were retrospectively collected and analyzed. Data analyses and random survival forest model construction were based on the R language. Result: Through a Cox univariate regression analysis of 90 included samples and 46 variables, 17 variables with p-values <0.1 were selected for initial model construction. The out-of-bag (OOB) performance error was 0.2094, and K-fold cross-validation yielded an internal validation C-index of 0.8182. Through model selection, cholinesterase, bile acid, the white blood cell count, total bilirubin, and albumin were chosen for the final predictive model, with a final OOB performance error of 0.2002 and C-index of 0.7805. Using the final model, patients were stratified into high- and low-risk groups, which showed significant differences with a P value <0.0001. The area under the curve was used to evaluate the predictive ability for patients in the first, third, and fifth years, with respective results of 0.9595, 0.8898, and 0.9088. Conclusion: The present study constructed a prognostic model for PBC-associated cirrhosis patients using a random survival forest model, which accurately stratified patients into low- and high-risk groups. Treatment strategies can thus be more targeted, leading to improved outcomes for high-risk patients.


Subject(s)
Liver Cirrhosis, Biliary , Humans , Prognosis , Liver Cirrhosis, Biliary/diagnosis , Liver Cirrhosis, Biliary/drug therapy , Ursodeoxycholic Acid/therapeutic use , Retrospective Studies , Liver Cirrhosis/drug therapy
6.
Bioresour Technol ; 393: 130104, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38008225

ABSTRACT

This study explored the potential of methanol as a sustainable feedstock for biomanufacturing, focusing on Methylobacterium extorquens, a well-established representative of methylotrophic cell factories. Despite this bacterium's long history, its untapped photosynthetic capabilities for production enhancement have remained unreported. Using genome-scale flux balance analysis, it was hypothesized that introducing photon fluxes could boost the yield of 3-hydroxypropionic acid (3-HP), an energy- and reducing equivalent-consuming chemicals. To realize this, M. extorquens was genetically modified by eliminating the negative regulator of photosynthesis, leading to improved ATP levels and metabolic activity in non-growth cells during a two-stage fermentation process. This modification resulted in a remarkable 3.0-fold increase in 3-HP titer and a 2.1-fold increase in its yield during stage (II). Transcriptomics revealed that enhanced light-driven methanol oxidation, NADH transhydrogenation, ATP generation, and fatty acid degradation were key factors. This development of photo-methylotrophy as a platform technology introduced novel opportunities for future production enhancements.


Subject(s)
Lactic Acid/analogs & derivatives , Methylobacterium , Methylobacterium/genetics , Methylobacterium/metabolism , Fermentation , Methanol/metabolism , Adenosine Triphosphate/metabolism , Metabolic Engineering/methods
7.
J Biol Inorg Chem ; 29(1): 101-112, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38148422

ABSTRACT

The aim of this study was to investigate the effect and possible underlying mechanism of La2(CO3)3 deposition on GI mucosal inflammation. Our results showed that La2(CO3)3 can dissolve in artificial gastric fluids and form lanthanum phosphate (LaPO4) precipitates with an average size of about 1 µm. To mimic the intestinal mucosa and epithelial barrier, we established a Caco-2/THP-1 macrophage coculture model and a Caco-2 monoculture model, respectively. Our findings demonstrated that the medium of THP-1 macrophages stimulated by LaPO4 particles can damage the Caco-2 monolayer integrity in the coculture model, while the particles themselves had no direct impact on the Caco-2 monolayer integrity in the monoculture model. We measured values of trans-epithelial electrical resistance and detected images using a laser scanning confocal microscope. These results indicate that continuous stimulation of LaPO4 particles on macrophages can lead to a disruption of intestinal epithelium integrity. In addition, LaPO4 particles could stimulate THP-1 macrophages to secrete both IL-1ß and IL-8. Although LaPO4 particles can also promote Caco-2 cells to secrete IL-8, the secretion was much lower than that produced by THP-1 macrophages. In summary, the deposition of La2(CO3)3 has been shown to activate macrophages and induce damage to intestinal epithelial cells, which may exacerbate inflammation in patients with chronic kidney disease. Therefore, patients taking lanthanum carbonate, especially those with gastrointestinal mucosal inflammation, should be mindful of the potential for drug deposition in the GI system.


Subject(s)
Lanthanum , Renal Insufficiency, Chronic , Humans , Lanthanum/pharmacology , Caco-2 Cells , Coculture Techniques , Interleukin-8/pharmacology , Macrophages , Inflammation/chemically induced
9.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(6): 1639-1646, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38071040

ABSTRACT

OBJECTIVE: To analyze the flow immunophenotype and clinical characteristics of leukemia patients with positive SET-CAN fusion gene. METHODS: A total of 7 newly diagnosed acute leukemia patients with SET-CAN fusion gene admitted to Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology from February 2016 to February 2020 were collected. Multiplex reverse transcriptase-polymerase chain reaction (RT-PCR) was used to detect the expression of SET-CAN fusion gene. The immunophenotype was detected by four-color flow cytometry. The case information of 17 literatures published at home and abroad was extracted for statistical analysis. RESULTS: Among the 7 patients, 2 cases were diagnosed as mixed phenotype acute leukemia (MPAL), 2 cases as acute myeloid leukemia (AML), and 3 cases as T-acute lymphoblastic leukemia (ALL)/lymphoblastic lymphoma (LBL). Leukemia cells in bone marrow specimens of all cases expressed or partially expressed CD34, CD33 and CD7. CD5 and cytoplasmic CD3 were expressed in 5 patients except 2 patients diagnosed with AML. Bone marrow and lymph node specimens were both detected in 2 patients, and the immunophenotypes of the two specimens were not completely consistent, with differences in lineage or maturity related markers. Two patients with MPAL showed differentiated response to treatment. One AML patient gave up treatment, and another AML patient with FLT3-ITD gene mutation had a poor prognosis. All three T-ALL/LBL patients maintained a long duration of remission after induced remission, and one case underwent allogeneic hematopoietic stem cell transplantation. CONCLUSIONS: There are common characteristics of immunophenotype in patients with positive SET-CAN fusion gene. Differential expression of immunophenotype in samples from different parts is observed in some cases. The prognosis of these diseases varies.


Subject(s)
Leukemia, Myeloid, Acute , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Leukemia, Myeloid, Acute/pathology , Bone Marrow/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Antigens, CD34 , Immunophenotyping
10.
Heliyon ; 9(12): e22429, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38046156

ABSTRACT

Lower grade gliomas (LGGs) exhibit invasiveness and heterogeneity as distinguishing features. The outcome of patients with LGG differs greatly. Recently, more and more studies have suggested that infiltrating inflammation cells and inflammation-related genes (IRGs) play an essential role in tumorigenesis, prognosis, and treatment responses. Nevertheless, the role of IRGs in LGG remains unclear. In The Cancer Genome Atlas (TCGA) cohort, we conducted a thorough examination of the predictive significance of IRGs and identified 245 IRGs that correlated with the clinical prognosis of individuals diagnosed with LGG. Based on unsupervised cluster analysis, we identified two inflammation-associated molecular clusters, which presented different tumor immune microenvironments, tumorigenesis scores, and tumor stemness indices. Furthermore, a prognostic risk model including ten prognostic IRGs (ADRB2, CD274, CXCL12, IL12B, NFE2L2, PRF1, SFTPC, TBX21, TNFRSF11B, and TTR) was constructed. The survival analysis indicated that the IRGs risk model independently predicted the prognosis of patients with LGG, which was validated in an independent LGG cohort. Moreover, the risk model significantly correlated with the infiltrative level of immune cells, tumor mutation burden, expression of HLA and immune checkpoint genes, tumorigenesis scores, and tumor stemness indices in LGG. Additionally, we found that our risk model could predict the chemotherapy response of some drugs in patients with LGG. This study may enhance the advancement of personalized therapy and improve outcomes of LGG.

11.
Parasite ; 30: 51, 2023.
Article in English | MEDLINE | ID: mdl-38015007

ABSTRACT

Giardia duodenalis is a common intestinal protozoan that can cause diarrhea and intestinal disease in animals and in humans. However, the prevalence and assemblages of G. duodenalis in pigs from Guangxi Zhuang Autonomous Region have not been reported. In this study, a total of 724 fecal samples (201 from nursery pigs, 183 from piglets, 175 from breeding pigs, and 165 from fattening pigs) were obtained in four areas of the region (Nanning, Yulin, Hezhou, and Guigang). The gene of the small subunit ribosomal RNA (SSU rRNA) of G. duodenalis was amplified by nested PCR. The results show that the prevalence of G. duodenalis in pigs was 3.59% (26/724), of which 14 samples belonged to assemblage A (53.85%) and 12 samples belonged to assemblage E (46.15%). The infection rates of G. duodenalis in Hezhou, Yulin, Nanning, and Guigang were 0%, 0.7%, 10.8% and 1.1%, respectively (χ2 = 45.616, p < 0.01); whereas 5.1% of breeding pigs, 6.0% of piglets, 2.4% of fattening pigs, and 1.0% of nursery pigs were infected with G. duodenalis (χ2 = 8.874, p < 0.05). The SSU rRNA-positive samples were amplified by PCR based on the ß-giardin (bg), glutamate dehydrogenase (gdh), and triphosphate isomerase (tpi) genes. Ten, eight and seven positive samples were detected, respectively. Based on phylogenetic analysis of the three genetic loci sequences, a multilocus genotyping A1 was found. The findings of this study provide basic data for the development of prevention and control of G. duodenalis infections in pigs and humans in the Guangxi Zhuang Autonomous Region.


Title: Premier rapport sur la prévalence et l'analyse des assemblages de Giardia duodenalis chez les porcs de la région autonome Zhuang du Guangxi, dans le sud de la Chine. Abstract: Giardia duodenalis est un protozoaire intestinal commun qui peut provoquer des diarrhées et des maladies intestinales chez les animaux et les humains. Cependant, la prévalence et les assemblages de G. duodenalis chez les porcs de la région autonome Zhuang du Guangxi n'ont pas été rapportés. Dans cette étude, un total de 724 échantillons fécaux (201 provenant de jeunes porcelets, 183 de porcelets, 175 de porcs reproducteurs et 165 de porcs à l'engrais) ont été obtenus dans quatre zones de la région (Nanning, Yulin, Hezhou et Guigang). Le gène de la petite sous-unité de l'ARN ribosomal (ARNr SSU) de G. duodenalis a été amplifié par PCR nichée. Les résultats ont montré que la prévalence de G. duodenalis chez les porcs était de 3,59 % (26/724), dont 14 échantillons appartenaient à l'assemblages A (53,85 %) et 12 échantillons à l'assemblage E (46,15 %). Les taux d'infection par G. duodenalis à Hezhou, Yulin, Nanning et Guigang étaient respectivement de 0, 0,7 %, 10,8 % et 1,1 % (χ2 = 45,616, p < 0,01), alors que 5,1 % des porcs reproducteurs, 6,0 % des porcelets, 2,4 % de porcs à l'engrais et 1,0 % des jeunes porcelets étaient infectés par G. duodenalis (χ2 = 8,874, p < 0,05). Les échantillons positifs pour l'ARNr SSU ont été amplifiés par PCR basée sur les gènes de la ß-giardine (bg), de la glutamate déshydrogénase (gdh) et de la triphosphate isomérase (tpi), et dix, huit et sept échantillons positifs ont été détectés, respectivement. Sur la base de l'analyse phylogénétique des trois séquences de loci génétiques, un génotypage multilocus A1 a été trouvé. Les résultats de cette étude fournissent des données de base pour le développement de la prévention et du contrôle des infections à G. duodenalis chez les porcs et les humains dans la région autonome Zhuang du Guangxi.


Subject(s)
Giardia lamblia , Giardiasis , Humans , Animals , Swine , Giardia lamblia/genetics , Giardiasis/epidemiology , Giardiasis/veterinary , Phylogeny , Prevalence , Multilocus Sequence Typing , Genotype , China/epidemiology , Protozoan Proteins/genetics , Sus scrofa , Feces , RNA, Ribosomal
12.
Inflammation ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37985573

ABSTRACT

Ulcerative colitis, an inflammatory bowel disease, manifests with symptoms such as abdominal pain, diarrhea, and mucopurulent feces. The long non-coding RNA (lncRNA) ANRIL exhibits significantly reduced expression in UC, yet its specific mechanism is unknown. This study revealed that ANRIL is involved in the progression of UC by inhibiting IL-6 and TNF-α via miR-191-5P/SATB1 axis. We found that in patients with UC, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were significantly overexpressed in inflamed colon sites, whereas ANRIL was significantly under-expressed and associated with disease severity. The downregulation of ANRIL resulted in the increased expression of IL-6 and TNF-α in LPS-treated FHCs. ANRIL directly targeted miR-191-5p, thereby inhibiting its expression and augmenting SATB1 expression. Moreover, overexpression of miR-191-5p abolished ANRIL-mediated inhibition of IL-6 and TNF-α production. Dual luciferase reporter assays revealed the specific binding of miR-191-5p to ANRIL and SATB1. Furthermore, the downregulation of ANRIL promoted DSS-induced colitis in mice. Together, we provide evidence that ANRIL plays a critical role in regulating IL-6 and TNF-α expression in UC by modulating the miR-191-5p/SATB1 axis. Our study provides novel insights into progression and molecular therapeutic strategies in UC.

13.
J Phys Chem B ; 127(46): 10088-10096, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37939001

ABSTRACT

Polyacrylamide (PAM) is one of the most important water-soluble polymers that has been extensively applied in water treatment, drug delivery, and flexible electronic devices. The basic properties, e.g., microstructure, nanomechanics, and solubility, are deeply involved in the performance of PAM materials. Current research has paid more attention to the development and expansion of the macroscopic properties of PAM materials, and the study of the mechanism involved with the roles of water and ions on the properties of PAM is insufficient, especially for the behaviors of neutral amide side groups. In this study, single molecule force spectroscopy was combined with molecular dynamic (MD) simulations, atomic force microscope imaging, and dynamic light scattering to investigate the effects of monovalent ions on the nanomechanics and molecular conformations of neutral PAM (NPAM). These results show that the single-molecule elasticity and conformation of NPAM exhibit huge variation in different monovalent salt solutions. NPAM adopts an extended conformation in aqueous solutions of strong hydrated ion (acetate), while transforms into a collapse globule in the existence of weakly hydrated ion (SCN-). It is believed that the competition between intramolecular and intermolecular weak interactions plays a key role to adjust the molecular conformation and elasticity of NPAM. The competition can be largely influenced by the type of monovalent ions through hydration or a chaotropic effect. Methods utilized in this study provide a means to better understand the Hofmeister effect of ions on other macromolecules containing amide groups at the single-molecule level.

14.
Pathogens ; 12(10)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37887759

ABSTRACT

Toxoplasma gondii is an opportunistic pathogenic protozoan that can infect all nucleated cells in almost all warm-blooded animals, including humans. T. gondii infection has been reported in many food animals worldwide. However, the prevalence and genotypes of T. gondii in chickens from farmers' markets in Fujian province in southeastern China remain unreported. In the present study, four tissue samples from each of the 577 chickens (namely, the heart, liver, lungs, and muscles) were collected from farmers' markets in five regions of Fujian province (Zhangzhou, Sanming, Quanzhou, Fuzhou, and Longyan). We first analyzed the prevalence and genotypes of T. gondii using PCR targeting of the B1 gene of T. gondii. Of the 577 chickens, thirty-two (5.5%) tested positive for the B1 gene. Among the five regions, Sanming had the highest infection rate (16.8%, 16/95), followed by Quanzhou (8.0%, 8/100), Longyan (5.0%, 5/100), Zhangzhou (1.1%, 2/182), and Fuzhou (1.0%, 1/100). Among these thirty-two T. gondii-positive chickens, the infection rates of the lungs, heart, liver, and muscles were 68.8% (22/32), 34.4% (11/32), 28.1% (9/32), and 9.4% (3/32), respectively. Significant differences in prevalence were found among the different regions (χ2 = 35.164, p < 0.05) and tissues (χ2 = 25.874, p < 0.05). A total of 128 tissue and organ samples of the thirty-two T. gondii-positive chickens from the different regions were analyzed using PCR-restriction fragment length polymorphism (PCR-RFLP) on the basis of 10 genetic markers. Seven tissue samples (lung samples from five chickens, heart samples from one chicken, and liver samples from one chicken) underwent successful amplification at all the genetic markers, and all the T. gondii genotypes were identified as genotype I (ToxoDB #10). These findings serve as a foundation for evaluating the risk of T. gondii contamination in chicken products intended for human consumption and offer insight into preventing the transmission of the parasite from chickens to humans.

15.
Foods ; 12(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37835254

ABSTRACT

Chlorogenic acid is a secondary metabolite produced by many traditional Chinese medicines. Its physiological activities (antibacterial, anti-inflammatory, antioxidant activities, etc.) have been well described. This study aimed to investigate the effects of chlorogenic acid on the biofilm of drinking water bacteria. The effects of chlorogenic acid on the metabolites of the biofilms were also evaluated. Chlorogenic acid was found to have an anti-biofilm effect against Pseudomonas, resulting in biofilm formation in a dose-dependent manner (0.53-25.4 mM CGA). Moreover, the biofilm structure was visibly attenuated. Furthermore, we identified and characterized 23 differential metabolites and associated two metabolic pathways involving beta-alanine metabolism and pyrimidine metabolism that were altered mostly during biofilm formation. A quantitative real-time PCR assay revealed that chlorogenic acid interfered with the signaling molecule synthesis and transcription regulators using the Las, Pqs and Rhl systems. These findings suggest that chlorogenic acid can be a quorum sensing (QS) inhibitor and inhibit biofilm formation. It may be a promising natural product for the prevention of contaminated drinking water.

16.
World J Gastroenterol ; 29(30): 4685-4700, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37662859

ABSTRACT

BACKGROUND: Upper gastrointestinal neoplasia mainly includes esophageal cancer and gastric cancer, both of which have high morbidity and mortality. Lymph node metastasis (LNM), as the most common metastasis mode of both diseases, is an important factor affecting tumor stage, treatment strategy and clinical prognosis. As a new fusion technology, endoscopic ultrasound (EUS) is becoming increasingly used in the diagnosis and treatment of digestive system diseases, but its use in detecting LNM in clinical practice remains limited. AIM: To evaluate the diagnostic value of conventional EUS for LNM in upper gastrointestinal neoplasia. METHODS: Using the search mode of "MeSH + Entry Terms" and according to the predetermined inclusion and exclusion criteria, we conducted a comprehensive search and screening of the PubMed, EMBASE and Cochrane Library databases from January 1, 2000 to October 1, 2022. Study data were extracted according to the predetermined data extraction form. The quality of the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies tool, and the results of the quality assessment were presented using Review Manager 5.3.5 software. Finally, Stata14.0 software was used for a series of statistical analyses. RESULTS: A total of 22 studies were included in our study, including 2986 patients. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic score and diagnostic odds ratio of conventional EUS in the diagnosis of upper gastrointestinal neoplasia LNM were 0.62 [95% confidence interval (CI): 0.50-0.73], 0.80 (95%CI: 0.73-0.86), 3.15 (95%CI: 2.46-4.03), 0.47 (95%CI: 0.36-0.61), 1.90 (95%CI: 1.51-2.29) and 6.67 (95%CI: 4.52-9.84), respectively. The area under the summary receiver operating characteristic curve was 0.80 (95%CI: 0.76-0.83). Sensitivity analysis indicated that the results of the meta-analysis were stable. There was considerable heterogeneity among the included studies, and the threshold effect was an important source of heterogeneity. Univariable meta-regression and subgroup analysis showed that tumor type, sample size and EUS diagnostic criteria were significant sources of heterogeneity in specificity (P < 0.05). No significant publication bias was found. CONCLUSION: Conventional EUS has certain clinical value and can assist in the detection of LNM in upper gastrointestinal neoplasia, but it cannot be used as a confirmatory or exclusionary test.


Subject(s)
Esophageal Neoplasms , Gastrointestinal Neoplasms , Upper Gastrointestinal Tract , Humans , Lymphatic Metastasis/diagnostic imaging , Gastrointestinal Neoplasms/diagnostic imaging , Endosonography , Upper Gastrointestinal Tract/diagnostic imaging
17.
Environ Health Perspect ; 131(9): 97004, 2023 09.
Article in English | MEDLINE | ID: mdl-37682722

ABSTRACT

BACKGROUND: Several epidemiological investigations demonstrated that maternal arsenic (As) exposure elevated risk of fetal growth restriction (FGR), but the mechanism remains unclear. OBJECTIVES: This study aimed to investigate the effects of gestational As exposure on placental and fetal development and its underlying mechanism. METHODS: Dams were exposed to 0.15, 1.5, and 15mg/L NaAsO2 throughout pregnancy via drinking water. Sizes of fetuses and placentas, placental histopathology, and glycogen content were measured. Placental RNA sequencing was conducted. Human trophoblasts were exposed to NaAsO2 (2µM) to establish an in vitro model of As exposure. The mRNA stability and protein level of genes identified through RNA sequencing were measured. N6-Methyladenosine (m6A) modification was detected by methylated RNA immunoprecipitation-quantitative real-time polymerase chain reason (qPCR). The binding ability of insulin-like growth factor 2 binding protein 2 to the gene of interest was detected by RNA-binding protein immunoprecipitation-qPCR. Intracellular S-adenosylmethionine (SAM) and methyltransferase activity were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and colorimetry, respectively. In vitro As+3 methyltransferase (As3MT) knockdown or SAM supplementation and in vivo folic acid (FA) supplementation were used to evaluate the protective effect. A case-control study verified the findings. RESULTS: Sizes of fetuses (exposed to 1.5 and 15mg/L NaAsO2) and placentas (exposed to 15mg/L NaAsO2) were lower in As-exposed mice. More glycogen+ trophoblasts accumulated and the expression of markers of interstitial invasion was lower in the 15mg/L NaAsO2-exposed mouse group in comparison with control. Placental RNA sequencing identified cysteine-rich angiogenic inducer 61 (Cyr61) as a candidate gene of interest. Mechanistically, mice and cells exposed to As had lower protein expression of CYR61, and this was attributed to a lower incidence of Cyr61 m6A. Furthermore, cells exposed to As had lower methyltransferase activity, suggesting that this could be the mechanism by which Cyr61 m6A was affected. Depletion of intracellular SAM, a cofactor for m6A methyltransferase catalytic domain, partially contributed to As-induced methyltransferase activity reduction. Either As3MT knockdown or SAM supplementation attenuated As-induced Cyr61 m6A down-regulation. In mice, FA supplementation rescued As-induced defective trophoblastic invasion and FGR. In humans, a negative correlation between maternal urinary As and plasma CYR61 was observed in infants who were small for gestational age. DISCUSSION: Using in vitro and in vivo models, we found that intracellular SAM depletion-mediated Cyr61 m6A down-regulation partially contributed to As-induced defective trophoblastic invasion and FGR. https://doi.org/10.1289/EHP12207.


Subject(s)
Arsenic , Placenta , Pregnancy , Infant , Humans , Female , Animals , Mice , Arsenic/toxicity , Case-Control Studies , Chromatography, Liquid , Tandem Mass Spectrometry , Fetal Development , Glycogen
18.
Foods ; 12(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37569158

ABSTRACT

This study aimed to explore the anti-inflammatory and gut microbiota modulation potentials of flavonoid-rich fraction (PFF) extracted from Passiflora foetida fruits. The results showed that PFF markedly reduced the production of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) in LPS-stimulated RAW 264.7 cells. Meanwhile, PFF treatment also effectively decreased the phosphorylation levels of MAPK, PI3K/Akt, and NF-κB signaling-pathway-related proteins (ERK, JNK, p38, Akt, and p65). Moreover, PFF had an impact on microbial composition and metabolites in a four-stage dynamic simulator of human gut microbiota (BFBL gut model). Specifically, PFF exhibited the growth-promoting ability of several beneficial bacteria, including Bifidobacterium, Enterococcus, Lactobacillus, and Roseburia, and short-chain fatty acid (SCFA) generation ability in gut microbiota. In addition, spectroscopic data revealed that PFF mainly contained five flavonoid compounds, which may be bioactive compounds with anti-inflammatory and gut microbiota modulation potentials. Therefore, PFF could be utilized as a natural anti-inflammatory agent or supplement to health products.

19.
Acta Pharmacol Sin ; 44(12): 2432-2444, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37507430

ABSTRACT

Polycystic ovary syndrome (PCOS) is a disorder with endocrinal and metabolic problems in reproductive aged women. Evidence shows that PCOS is in a high prone trend to develop kidney diseases. In this study, we investigated the mediators responsible for PCOS-related kidney injury. We found that tumor necrosis factor (TNF-α) levels were significantly increased in serum and primary cultured granulosa cells (GCs) from PCOS patients. Serum TNF-α levels were positively correlated with serum testosterone and luteinizing hormone (LH)/follicle-stimulating hormone (FSH) ratio, suggesting its positive role in the severity of PCOS. Serum TNF-α levels were also positively correlated with the levels of urinary KapU, LamU, α1-MU and ß2-MU, the markers for renal tubular cell-derived proteinuria. We established a PCOS mouse model by resection of the right kidney, followed by daily administration of dihydrotestosterone (DHT, 27.5 µg, i.p.) from D7 for 90 days. We found that TNF-α levels were significantly increased in the ovary and serum of the mice, accompanied by increased renal tubular cell apoptosis, inflammation and fibrosis in kidneys. Furthermore, the receptor of TNF-α, tumor necrosis factor receptor 1 (TNFR1), was significantly upregulated in renal tubular cells. We treated human ovarian granulosa-like tumor cells (KGN) with DHT (1 µg/ml) in vitro, the conditioned medium derived from the granulosa cell culture greatly accelerated apoptotic injury in human proximal tubular epithelial cells (HKC-8), which was blocked after knockdown of TNF-α in KGN cells. Furthermore, knockdown of TNFR1 in renal tubular epithelial cells greatly ameliorated cell injury induced by granulosa cell-derived conditioned medium. These results suggest that serum TNF-α plays a key role in mediating inflammation and apoptosis in renal tubular cells associated with PCOS-related kidney injury.


Subject(s)
Polycystic Ovary Syndrome , Female , Humans , Mice , Animals , Adult , Polycystic Ovary Syndrome/complications , Polycystic Ovary Syndrome/metabolism , Tumor Necrosis Factor-alpha/metabolism , NF-kappa B/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Culture Media, Conditioned/metabolism , Granulosa Cells/metabolism , Granulosa Cells/pathology , Inflammation/metabolism , Kidney/metabolism , Apoptosis
20.
bioRxiv ; 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37461570

ABSTRACT

Hypoxic ischemic encephalopathy (HIE) is a brain injury that occurs in 1 ~ 5/1000 term neonates. Accurate identification and segmentation of HIE-related lesions in neonatal brain magnetic resonance images (MRIs) is the first step toward predicting prognosis, identifying high-risk patients, and evaluating treatment effects. It will lead to a more accurate estimation of prognosis, a better understanding of neurological symptoms, and a timely prediction of response to therapy. We release the first public dataset containing neonatal brain diffusion MRI and expert annotation of lesions from 133 patients diagnosed with HIE. HIE-related lesions in brain MRI are often diffuse (i.e., multi-focal), and small (over half the patients in our data having lesions occupying <1% of brain volume). Segmentation for HIE MRI data is remarkably different from, and arguably more challenging than, other segmentation tasks such as brain tumors with focal and relatively large lesions. We hope that this dataset can help fuel the development of MRI lesion segmentation methods for HIE and small diffuse lesions in general.

SELECTION OF CITATIONS
SEARCH DETAIL
...