Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Front Med (Lausanne) ; 11: 1400334, 2024.
Article in English | MEDLINE | ID: mdl-38784223

ABSTRACT

Background: Agarwood moxibustion is a folk therapy developed by individuals of the Li nationality in China. There is evidence that agarwood moxa smoke (AMS) generated during agarwood moxibustion therapy can treat sleep disorders via traditional Chinese medicines' multiple target and pathway characteristics. However, the specific components and mechanisms involved have yet to be explored. Objective: GC-MS (Gas Chromatography-Mass Spectrometry) and network pharmacology were used to investigate AMS's molecular basis and mechanism in treating sleep deprivation. Method: GC-MS was used to determine the chemical composition of AMS; component target information was collected from TCMSP (Traditional Chinese Medicine Systems Pharmacology), PubChem (Public Chemical Database), GeneCards (Human Gene Database), and DisGeNet (Database of Genes and Diseases) were used to identify disease targets, and JVenn (Joint Venn) was used to identify the common targets of AMS and sleep disorders. STRING was used to construct a protein interaction network, Cytoscape 3.9.1 was used to build a multilevel network diagram of the "core components-efficacy targets-action pathways," the targets were imported into Metascape and DAVID for GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses and Autodock was used for molecular docking. This research used a network pharmacology methodology to investigate the therapeutic potential of Agarwood Moxa Smoke (AMS) in treating sleep problems. Examining the target genes and chemical constituents of AMS offers insights into the molecular processes and targets of the disease. Result: Nine active ingredients comprising anti-inflammatory substances and antioxidants, such as caryophyllene and p-cymene, found seven sleep-regulating signaling pathways and eight targets linked to sleep disorders. GC-MS was used to identify the 94 active ingredients in AMS, and the active ingredients had strong binding with the key targets. Key findings included active components with known medicinal properties, such as p-cymene, eucalyptol, and caryophyllene. An investigation of network pharmacology revealed seven signaling pathways for sleep regulation and eight targets linked to sleep disorders, shedding light on AMS's effectiveness in enhancing sleep quality. Conclusion: AMS may alleviate sleep disorders by modulating cellular and synaptic signaling, controlling hormone and neurotransmitter pathways, etc. Understanding AMS's material basis and mechanism of action provides a foundation for future research on treating sleep disorders with AMS. According to the study, Agarwood Moxa Smoke (AMS) may improve sleep quality by modifying cellular and synaptic signaling pathways for those who suffer from sleep problems. This might lead to the development of innovative therapies with fewer side effects.

2.
Article in English | MEDLINE | ID: mdl-38733463

ABSTRACT

Neuroinflammation is considered an important factor that leads to cognitive impairment. Microglia play a crucial role in neuroinflammation, which leads to cognitive impairment. This study aimed at determining whether temporin-GHaR peptide (GHaR) could improve cognitive function and at uncovering the underlying mechanisms. We found that GHaR treatment alleviated LPS-induced cognitive impairment and inhibited activation of microglia in LPS-induced mice. Furthermore, GHaR inhibited activation of endoplasmic reticulum stress (ERS) and the NF-κB signaling pathway in LPS-induced mice. In vitro, GHaR inhibited M1 polarization of BV2 cells and suppressed TNF-α and IL-6 secretion. Additionally, GHaR neuronal cell viability and apoptosis were induced by LPS-activated microglia-conditioned medium. Moreover, in LPS-induced BV2 cells, GHaR inhibited activation of ERS and the NF-κB signaling pathway. In summary, GHaR improved LPS-induced cognitive and attenuated inflammatory responses via microglial activation reversal. In conclusion, the neuroprotective effects of GHaR were mediated via the ERS signaling pathway.

3.
J Pharm Biomed Anal ; 245: 116158, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38643703

ABSTRACT

Areca nuts have been used as a traditional Chinese medicine (TCM) for thousands of years. Recent studies have shown that it exhibits good pharmacological activity and toxicity. In this study, the pharmacokinetics of five major components of areca nut extract in rats were investigated using a highly sensitive ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-MS/MS) method. Arecoline, arecaidine, guvacoline, guvacine, and catechin were separated and quantified accurately using gradient elution with mobile phases of (A) water containing 0.1 % formic acid-10 mM ammonium formate, and (B) methanol. The constituents were detected under a timing switch between the positive and negative ion modes using multiple reaction monitoring (MRM). Each calibration curve had a high R2 value of >0.99. The method accuracies ranged -7.09-11.05 % and precision values were less than 14.36 %. The recovery, matrix effect, selectivity, stability, and carry-over of the method were in accordance with the relevant requirements. It was successfully applied for the investigation of the pharmacokinetics of these five constituents after oral administration of areca nut extract. Pharmacokinetic results indirectly indicated a metabolic relationship between the four areca nut alkaloids in rats. For further clarification of its pharmacodynamic basis, this study provided a theoretical reference.


Subject(s)
Areca , Nuts , Plant Extracts , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Animals , Tandem Mass Spectrometry/methods , Areca/chemistry , Chromatography, High Pressure Liquid/methods , Rats , Male , Nuts/chemistry , Plant Extracts/pharmacokinetics , Plant Extracts/chemistry , Plant Extracts/blood , Arecoline/pharmacokinetics , Arecoline/blood , Arecoline/analogs & derivatives , Reproducibility of Results , Administration, Oral , Catechin/pharmacokinetics , Catechin/blood , Catechin/chemistry , Liquid Chromatography-Mass Spectrometry
4.
J Cardiovasc Transl Res ; 17(1): 133-152, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38091232

ABSTRACT

Diabetes is one of the critical independent risk factors for the progression of cardiovascular disease, and the underlying mechanism regarding this association remains poorly understood. Hence, it is urgent to decipher the fundamental pathophysiology and consequently provide new insights into the identification of innovative therapeutic targets for diabetic atherosclerosis. It is now appreciated that different cell types are heavily involved in the progress of diabetic atherosclerosis, including endothelial cells, macrophages, vascular smooth muscle cells, dependence on altered metabolic pathways, intracellular lipids, and high glucose. Additionally, extensive studies have elucidated that diabetes accelerates the odds of atherosclerosis with the explanation that these two chronic disorders share some common mechanisms, such as endothelial dysfunction and inflammation. In this review, we initially summarize the current research and proposed mechanisms and then highlight the role of these three cell types in diabetes-accelerated atherosclerosis and finally establish the mechanism pinpointing the relationship between diabetes and atherosclerosis.


Subject(s)
Atherosclerosis , Diabetes Mellitus , Humans , Glucose/metabolism , Endothelial Cells/metabolism , Lipid Metabolism , Atherosclerosis/metabolism
5.
Front Microbiol ; 14: 1267389, 2023.
Article in English | MEDLINE | ID: mdl-37822738

ABSTRACT

Introduction: Temporin-GHa obtained from the frog Hylarana guentheri showed bactericidal efficacy against Streptococcus mutans. To enhance its antibacterial activity, the derived peptides GHaR and GHa11R were designed, and their antibacterial performance, antibiofilm efficacy and potential in the inhibition of dental caries were evaluated. Methods: Bacterial survival assay, fluorescent staining assay and transmission electron microscopy observation were applied to explore how the peptides inhibited and killed S. mutans. The antibiofilm efficacy was assayed by examining exopolysaccharide (EPS) and lactic acid production, bacterial adhesion and cell surface hydrophobicity. The gene expression level of virulence factors of S. mutans was detected by qRT-PCR. Finally, the impact of the peptides on the caries induced ability of S. mutans was measured using a rat caries model. Results: It has been shown that the peptides inhibited biofilm rapid accumulation by weakening the initial adhesion of S. mutans and reducing the production of EPS. Meanwhile, they also decreased bacterial acidogenicity and aciduricity, and ultimately prevented caries development in vivo. Conclusion: GHaR and GHa11R might be promising candidates for controlling S. mutans infections.

6.
J Pharm Biomed Anal ; 235: 115637, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37634356

ABSTRACT

The fruits of Alpinia oxyphylla Miq., a broadly utilized traditional Chinese medicine, have a number of effects on the central nervous system (CNS). The main active constituents of Alpiniae oxyphyllae fructus (AOF) were nootkatone, tectochrysin, chrysin and protocatechuic acid. An immortalized human brain microvascular endothelial cell (hCMEC/D3) and astrocyte (HA1800) coculture model was used to investigate the permeability of the blood-brain barrier (BBB). The validation of ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) methods for the four compounds was conducted following industry guidelines. Calibration curves were generated with mean coefficients (R2) better than 0.99. The inter-day and intra-day precisions were less than 8.53% and 7.12%, respectively. The accuracies were lower than ± 11.57%, and recoveries were greater than 86.07%. The samples of the transport experiment were examined, and the apparent permeability coefficients (Papp) were calculated. The efflux ratios of the four compounds are all less than 2. The Papp values of protocatechuic acid, chrysin, nootkatone, tectochrysin were at the level of 10-5, 10-6, 10-6, and 10-7 cm/s, respectively. All four compounds crossed the BBB by passive diffusion, with protocatechuic acid having high permeability, and tectochrysin having poor permeability. This research indicated the permeability of protocatechuic acid, chrysin, nootkatone and tectochrysin through the BBB and offered a foundation for related research on AOF in the treatment of CNS illnesses.


Subject(s)
Blood-Brain Barrier , Fruit , Humans , Tandem Mass Spectrometry
7.
Acta Pharmacol Sin ; 44(11): 2184-2200, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37328648

ABSTRACT

Clinically, cardiac dysfunction is a key component of sepsis-induced multi-organ failure. Mitochondria are essential for cardiomyocyte homeostasis, as disruption of mitochondrial dynamics enhances mitophagy and apoptosis. However, therapies targeted to improve mitochondrial function in septic patients have not been explored. Transcriptomic data analysis revealed that the peroxisome proliferator-activated receptor (PPAR) signaling pathway in the heart was the most significantly decreased in the cecal ligation puncture-treated mouse heart model, and PPARα was the most notably decreased among the three PPAR family members. Male Pparafl/fl (wild-type), cardiomyocyte-specific Ppara-deficient (PparaΔCM), and myeloid-specific Ppara-deficient (PparaΔMac) mice were injected intraperitoneally with lipopolysaccharide (LPS) to induce endotoxic cardiac dysfunction. PPARα signaling was decreased in LPS-treated wild-type mouse hearts. To determine the cell type in which PPARα signaling was suppressed, the cell type-specific Ppara-null mice were examined. Cardiomyocyte- but not myeloid-specific Ppara deficiency resulted in exacerbated LPS-induced cardiac dysfunction. Ppara disruption in cardiomyocytes augmented mitochondrial dysfunction, as revealed by damaged mitochondria, lowered ATP contents, decreased mitochondrial complex activities, and increased DRP1/MFN1 protein levels. RNA sequencing results further showed that cardiomyocyte Ppara deficiency potentiated the impairment of fatty acid metabolism in LPS-treated heart tissue. Disruption of mitochondrial dynamics resulted in increased mitophagy and mitochondrial-dependent apoptosis in Ppara△CM mice. Moreover, mitochondrial dysfunction caused an increase of reactive oxygen species, leading to increased IL-6/STAT3/NF-κB signaling. 3-Methyladenine (3-MA, an autophagosome formation inhibitor) alleviated cardiomyocyte Ppara disruption-induced mitochondrial dysfunction and cardiomyopathy. Finally, pre-treatment with the PPARα agonist WY14643 lowered mitochondrial dysfunction-induced cardiomyopathy in hearts from LPS-treated mice. Thus, cardiomyocyte but not myeloid PPARα protects against septic cardiomyopathy by improving fatty acid metabolism and mitochondrial dysfunction, thus highlighting that cardiomyocyte PPARα may be a therapeutic target for the treatment of cardiac disease.


Subject(s)
Cardiomyopathies , Heart Diseases , Humans , Male , Mice , Animals , Myocytes, Cardiac/metabolism , PPAR alpha/metabolism , Lipopolysaccharides , Cardiomyopathies/drug therapy , Cardiomyopathies/prevention & control , Cardiomyopathies/metabolism , Mitochondria/metabolism , Mice, Knockout , Disease Models, Animal , Fatty Acids/metabolism
8.
Biol Rev Camb Philos Soc ; 98(4): 1184-1199, 2023 08.
Article in English | MEDLINE | ID: mdl-36914985

ABSTRACT

Biochar amendment is one of the most promising agricultural approaches to tackle climate change by enhancing soil carbon (C) sequestration. Microbial-mediated decomposition processes are fundamental for the fate and persistence of sequestered C in soil, but the underlying mechanisms are uncertain. Here, we synthesise 923 observations regarding the effects of biochar addition (over periods ranging from several weeks to several years) on soil C-degrading enzyme activities from 130 articles across five continents worldwide. Our results showed that biochar addition increased soil ligninase activity targeting complex phenolic macromolecules by 7.1%, but suppressed cellulase activity degrading simpler polysaccharides by 8.3%. These shifts in enzyme activities explained the most variation of changes in soil C sequestration across a wide range of climatic, edaphic and experimental conditions, with biochar-induced shift in ligninase:cellulase ratio correlating negatively with soil C sequestration. Specifically, short-term (<1 year) biochar addition significantly reduced cellulase activity by 4.6% and enhanced soil organic C sequestration by 87.5%, whereas no significant responses were observed for ligninase activity and ligninase:cellulase ratio. However, long-term (≥1 year) biochar addition significantly enhanced ligninase activity by 5.2% and ligninase:cellulase ratio by 36.1%, leading to a smaller increase in soil organic C sequestration (25.1%). These results suggest that shifts in enzyme activities increased ligninase:cellulase ratio with time after biochar addition, limiting long-term soil C sequestration with biochar addition. Our work provides novel evidence to explain the diminished soil C sequestration with long-term biochar addition and suggests that earlier studies may have overestimated soil C sequestration with biochar addition by failing to consider the physiological acclimation of soil microorganisms over time.


Subject(s)
Carbon , Cellulases , Soil , Carbon Sequestration
9.
Mikrochim Acta ; 190(2): 66, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36692590

ABSTRACT

Blue fluorescent carbon dots (PCDs) were prepared by hydrothermal method with Partridge tea. The ethanol extract of Partridge tea (PEE) was found to emit red fluorescence. Thus, a novel ratiometric sensor was constructed by simply mixing the two fluorophores derived from Partridge tea. The presence of tetracycline (TET) at lower concentrations enhanced the emission peak at 508 nm of PCDs and had a negligible effect on the emission peak at 680 nm of PEE. TET at higher concentrations led to  quenching  both the fluorescence of PCDs and PEE via inner filter effect and fluorescence resonance energy transfer, separately. Good linearities for the detection of TET were obtained in the ranges 0.67 to 15.00 µM and 33.33 to 266.67 µM, with limit of detection of 0.095 µM. The sensor was successfully applied to detect TET in lake water and milk samples with good recoveries ranging from 93.27 ± 4.04% to 107.30 ± 6.16%. This study provided a simple, selective, sensitive, rapid, and environmentally friendly method of monitoring TET residues in the environment and food.


Subject(s)
Quantum Dots , Quantum Dots/chemistry , Limit of Detection , Tetracycline/analysis , Anti-Bacterial Agents/analysis , Tea
10.
Protein Pept Lett ; 30(2): 183-192, 2023.
Article in English | MEDLINE | ID: mdl-36476441

ABSTRACT

BACKGROUND: Temporin is one family of the shortest antimicrobial peptides found in Ranidae frogs. Staphylococcus aureus is one of the main pathogens of suppurative diseases and food contamination, causing severe local or systemic infections in humans. Temporin-GHa (GHa) was previously obtained from Hylarana guentheri, showing weak antibacterial activity against S. aureus. Most temporin peptides are positively charged by arginine and lysine; however, GHa contains histidine. OBJECTIVE: In order to investigate the impact of positively charged amino acid on its antibacterial and antibiofilm activity, GHa4R was designed and synthesized by replacing histidine with arginine in GHa. METHODS: The antibacterial activity and efficacy against S. aureus were detected by minimum inhibitory concentration, minimum bactericidal concentration, and time-killing kinetics assays. The action mechanism was determined by propidium iodide uptake and scanning electron microscopy assays. The antibiofilm activity was measured by the MTT method. Eradication of biofilm was observed by fluorescence microscope. RESULTS: Compared to GHa, GHa4R had stronger antibacterial activity and bactericidal efficacy against S. aureus. Impressively, GHa4R presented antibacterial activity against methicillin-resistant S. aureus (MRSA). It was barely affected by temperature, pH, and storage period, showing high stability. Furthermore, it increased the permeability of the cell membrane and damaged the membrane integrity, leading to cell death. In addition, GHa4R did not induce antibiotic resistance in S. aureus in 30 days, but the MIC of vancomycin was doubled. It not only inhibited S. aureus biofilm formation but also eradicated 24 h-biofilms. CONCLUSION: The above-mentioned characteristics make GHa4R a promising candidate for the treatment of S. aureus infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcus aureus , Humans , Histidine , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Biofilms , Microbial Sensitivity Tests
11.
Antioxidants (Basel) ; 11(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36552585

ABSTRACT

Vascular remodeling is the fundamental basis for hypertensive disease, in which vascular smooth muscle cell (VSMC) dysfunction plays an essential role. Previous studies suggest that the activation of peroxisome proliferator-activated receptor α (PPARα) by fibrate drugs has cardiovascular benefits independent of the lipid-lowering effects. However, the underlying mechanism remains incompletely understood. This study explored the role of PPARα in angiotensin II (Ang II)-induced vascular remodeling and hypertension using VSMC-specific Ppara-deficient mice. The PPARα expression was markedly downregulated in the VSMCs upon Ang II treatment. A PPARα deficiency in the VSMC significantly aggravated the Ang II-induced hypertension and vascular stiffness, with little influence on the cardiac function. The morphological analyses demonstrated that VSMC-specific Ppara-deficient mice exhibited an aggravated vascular remodeling and oxidative stress. In vitro, a PPARα deficiency dramatically increased the production of mitochondrial reactive oxidative species (ROS) in Ang II-treated primary VSMCs. Finally, the PPARα activation by Wy14643 improved the Ang II-induced ROS production and vascular remodeling in a VSMC PPARα-dependent manner. Taken together, these data suggest that PPARα plays a critical protective role in Ang II-induced hypertension via attenuating ROS production in VSMCs, thus providing a potential therapeutic target for hypertensive diseases.

12.
Biosci Biotechnol Biochem ; 87(1): 63-73, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36367541

ABSTRACT

Antimicrobial peptides (AMPs) show broad-spectrum microbicidal activity against bacteria, fungi, and viruses, and have been considered as one of the most promising candidates to overcome bacterial antimicrobial resistance. Structural modification of AMPs is an effective strategy to develop high-efficiency and low-toxicity antibacterial agents. A series of peptides GHaR6R, GHaR7R, GHaR8R, and GHaR9W with arginine replacement of histidine (His) derived from temporin-GHa of Hylarana guentheri were designed and synthesized. These derived peptides exhibit antibacterial activity against Staphylococcus aureus, and GHaR8R exerts bactericidal effect within 15 min at 4 × MIC (25 µm). The derived peptides caused rapid depolarization of bacteria, and the cell membrane damage was monitored using quartz crystal microbalance with dissipation assay, which suggests that they target cell membranes to exert antibacterial effects. The derived peptides can effectively eradicate mature biofilms of S. aureus. Taken together, the derived peptides are promising antibacterial agent candidates against S. aureus.


Subject(s)
Anti-Infective Agents , Staphylococcal Infections , Humans , Staphylococcus aureus , Histidine/pharmacology , Arginine/pharmacology , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms , Bacteria
13.
J Psychiatr Res ; 156: 628-638, 2022 12.
Article in English | MEDLINE | ID: mdl-36375230

ABSTRACT

Schizophrenia (SZ) is a serious neurodevelopmental disorder. As the etiology of SZ is complex and the pathogenesis is not thoroughly understood, the diagnosis of different subtypes still depends on the subjective judgment of doctors. Therefore, there is an urgent need to develop early objective laboratory diagnostic biomarkers to screen different subtypes of patients as early as possible, and to implement targeted prevention and precision medicine to reduce the risk of SZ and improve patients' quality of life. In this study, untargeted metabolomics and 16S rDNA sequencing were used to analyze the differences in metabolites and gut microflora among 28 patients with two types of schizophrenia and 11 healthy subjects. The results showed that the metabolome and sequencing data could effectively discriminate among paranoid schizophrenia patients, undifferentiated schizophrenia patients and healthy controls. We obtained 65 metabolites and 76 microorganisms with significant changes, and fecal metabolite composition was significantly correlated with the differential genera (|r|>0.5), indicating that there was a regulatory relationship between the gut microbiota and the host metabolites. The gut microbiome, as an objective and measurable index, showed good diagnostic value for distinguishing schizophrenia patients from healthy people, especially with a combination of several differential microorganisms, which had the best diagnostic effect (AUC>0.9). Our results are conducive to understanding the complicated metabolic changes in SZ patients and providing valuable information for the clinical diagnosis of SZ.


Subject(s)
Schizophrenia , Humans , Schizophrenia/diagnosis , Quality of Life , Metabolomics , Health Status
14.
Fish Physiol Biochem ; 48(4): 1039-1055, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35831485

ABSTRACT

Although diquat is a widely used water-soluble herbicide in the world, its sublethal adverse effects to fish have not been well characterised. In this study, histopathological examination and biochemical assays were applied to assess hepatotoxicity and combined with gas chromatography-mass spectrometry (GC-MS)-based metabolomics analysis to reveal overall metabolic mechanisms in the liver of zebrafish (Danio rerio) after diquat exposure at concentrations of 0.34 and 1.69 mg·L-1 for 21 days. Results indicated that 1.69 mg·L-1 diquat exposure caused cellular vacuolisation and degeneration with nuclear abnormality and led to the disturbance of antioxidative system and dysfunction in the liver. No evident pathological injury was detected, and changes in liver biochemistry were not obvious in the fish exposed to 0.34 mg·L-1 diquat. Multivariate statistical analysis revealed differences between profiles obtained by GC-MS spectrometry from control and two treatment groups. A total of 17 and 22 metabolites belonging to different classes were identified following exposure to 0.34 and 1.69 mg·L-1 diquat, respectively. The metabolic changes in the liver of zebrafish are mainly manifested as inhibition of energy metabolism, disorders of amino acid metabolism and reduction of antioxidant capacity caused by 1.69 mg·L-1 diquat exposure. The energy metabolism of zebrafish exposed to 0.34 mg·L-1 diquat was more inclined to rely on anaerobic glycolysis than that of normal zebrafish, and interference effects on lipid metabolism were observed. The metabolomics approach provided an innovative perspective to explore possible hepatic damages on fish induced by diquat as a basis for further research.


Subject(s)
Herbicides , Water Pollutants, Chemical , Animals , Diquat/metabolism , Diquat/toxicity , Embryo, Nonmammalian/metabolism , Herbicides/toxicity , Liver/metabolism , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism
15.
Acta Biochim Biophys Sin (Shanghai) ; 54(3): 350-360, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35538042

ABSTRACT

Temporin-GHa (GHa) was cloned from , showing a weak antimicrobial activity. In order to improve its bactericidal efficacy, GHaR6R, GHaR7R, GHaR8R and GHaR9W were designed and synthesized. Compared to the parent peptide, the GHa-derived peptides show potent antimicrobial activities against methicillin-resistant (MRSA), which is the main pathogen with high morbidity and mortality that causes various infections in humans. These peptides exert bactericidal actions on MRSA by permeabilizing the cytoplasmic membranes and damaging membrane integrity. All of the four peptides exhibit excellent stability under harsh conditions, including extreme temperature and salts. Furthermore, they inhibit the formation of biofilm and eradicate mature biofilm of MRSA. The GHa-derived peptides decrease bacterial surface hydrophobicity, autoaggregation and polysaccharide intercellular adhesion synthesis in concentration-dependent manner. Real-time quantitative reverse transcription PCR analysis revealed that the peptides downregulate the expression of adhesion genes involved in biofilm formation. Except for GHaR7R, the other three peptides have low hemolytic toxicity against human erythrocytes. In the presence of human erythrocytes, GHaR7R, GHaR8R and GHaR9W interact with MRSA preferentially. GHaR6R, GHaR8R and GHaR9W show less toxicity toward normal cells HL-7702 and hFOB1.19. These results suggest that the GHa-derived peptides may be promising antimicrobial candidates against MRSA infections.


Subject(s)
Anti-Infective Agents , Methicillin Resistance , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Biofilms , Humans , Microbial Sensitivity Tests
16.
Hepatobiliary Surg Nutr ; 11(2): 199-211, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35464270

ABSTRACT

Background: Liver regeneration is a fundamental process for sustained body homeostasis and liver function recovery after injury. Emerging evidence demonstrates that myeloid cells play a critical role in liver regeneration by secreting cytokines and growth factors. Peroxisome proliferator-activated receptor α (PPARα), the target of clinical lipid-lowering fibrate drugs, regulates cell metabolism, proliferation, and survival. However, the role of myeloid PPARα in partial hepatectomy (PHx)-induced liver regeneration remains unknown. Methods: Myeloid-specific PPARa-deficient (Ppara Mye-/-) mice and the littermate controls (Ppara fl/fl) were subjected to sham or 2/3 PHx to induce liver regeneration. Hepatocyte proliferation and mitosis were assessed by immunohistochemical (IHC) staining for 5-bromo-2'-deoxyuridine (BrdU) and Ki67 as well as hematoxylin and eosin (H&E) staining. Macrophage and neutrophil infiltration into livers were reflected by IHC staining for galectin-3 and myeloperoxidase (MPO) as well as flow cytometry analysis. Macrophage migration ability was evaluated by transwell assay. The mRNA levels for cell cycle or inflammation-related genes were measured by quantitative real-time RT-PCR (qPCR). The protein levels of cell proliferation related protein and phosphorylated signal transducer and activator of transcription 3 (STAT3) were detected by Western blotting. Results: Ppara Mye-/- mice showed enhanced hepatocyte proliferation and mitosis at 32 h after PHx compared with Ppara fl/fl mice, which was consistent with increased proliferating cell nuclear antigen (Pcna) mRNA and cyclinD1 (CYCD1) protein levels in Ppara Mye-/- mice at 32 h after PHx, indicating an accelerated liver regeneration in Ppara Mye-/- mice. IHC staining showed that macrophages and neutrophils were increased in Ppara Mye-/- liver at 32 h after PHx. Livers of Ppara Mye-/- mice also showed an enhanced infiltration of M1 macrophages at 32 h after PHx. In vitro, Ppara-deficient bone marrow-derived macrophages (BMDMs) exhibited markedly enhanced migratory capacity and upregulated M1 genes Il6 and Tnfa but downregulated M2 gene Arg1 expressions. Furthermore, the phosphorylation of STAT3, a key transcript factor mediating IL6-promoted hepatocyte survival and proliferation, was reinforced in the liver of Ppara Mye-/- mice after PHx. Conclusions: This study provides evidence that myeloid PPARα deficiency accelerates PHx-induced liver regeneration via macrophage polarization and consequent IL-6/STAT3 activation, thus providing a potential target for manipulating liver regeneration.

17.
Pharmacol Ther ; 238: 108186, 2022 10.
Article in English | MEDLINE | ID: mdl-35413308

ABSTRACT

Cardiovascular diseases are the leading cause of death worldwide. During the development of cardiovascular diseases, hypoxia plays a crucial role. Hypoxia-inducible factors (HIFs) are the key transcription factors for adaptive hypoxic responses, which orchestrate the transcription of numerous genes involved in angiogenesis, erythropoiesis, glycolytic metabolism, inflammation, and so on. Recent studies have dissected the precise role of cell-specific HIFs in the pathogenesis of hypertension, atherosclerosis, aortic aneurysms, pulmonary arterial hypertension, and heart failure using tissue-specific HIF-knockout or -overexpressing animal models. More importantly, several compounds developed as HIF inhibitors or activators have been in clinical trials for the treatment of renal cancer or anemia; however, little is known on the therapeutic potential of these inhibitors for cardiovascular diseases. The purpose of this review is to summarize the recent advances on HIFs in the pathogenesis and pathophysiology of cardiovascular diseases and to provide evidence of potential clinical therapeutic targets.


Subject(s)
Cardiovascular Diseases , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cardiovascular Diseases/metabolism , Erythropoiesis , Humans , Hypoxia/complications , Hypoxia-Inducible Factor 1, alpha Subunit , Inflammation/complications , Transcription Factors/metabolism
18.
Acta Pharmacol Sin ; 43(5): 1231-1242, 2022 May.
Article in English | MEDLINE | ID: mdl-34376812

ABSTRACT

Peroxisome proliferator-activated receptor α (PPARα), a ligand-activated nuclear receptor critical for systemic lipid homeostasis, has been shown closely related to cardiac remodeling. However, the roles of cardiomyocyte PPARα in pressure overload-induced cardiac remodeling remains unclear because of lacking a cardiomyocyte-specific Ppara-deficient (PparaΔCM) mouse model. This study aimed to determine the specific role of cardiomyocyte PPARα in transverse aortic constriction (TAC)-induced cardiac remodeling using an inducible PparaΔCM mouse model. PparaΔCM and Pparafl/fl mice were randomly subjected to sham or TAC for 2 weeks. Cardiomyocyte PPARα deficiency accelerated TAC-induced cardiac hypertrophy and fibrosis. Transcriptome analysis showed that genes related to fatty acid metabolism were dramatically downregulated, but genes critical for glycolysis were markedly upregulated in PparaΔCM hearts. Moreover, the hypertrophy-related genes, including genes involved in extracellular matrix (ECM) remodeling, cell adhesion, and cell migration, were upregulated in hypertrophic PparaΔCM hearts. Western blot analyses demonstrated an increased HIF1α protein level in hypertrophic PparaΔCM hearts. PET/CT analyses showed an enhanced glucose uptake in hypertrophic PparaΔCM hearts. Bioenergetic analyses further revealed that both basal and maximal oxygen consumption rates and ATP production were significantly increased in hypertrophic Pparafl/fl hearts; however, these increases were markedly blunted in PparaΔCM hearts. In contrast, hypertrophic PparaΔCM hearts exhibited enhanced extracellular acidification rate (ECAR) capacity, as reflected by increased basal ECAR and glycolysis but decreased glycolytic reserve. These results suggest that cardiomyocyte PPARα is crucial for the homeostasis of both energy metabolism and ECM during TAC-induced cardiac remodeling, thus providing new insights into potential therapeutics of cardiac remodeling-related diseases.


Subject(s)
Heart Diseases , PPAR alpha , Animals , Disease Models, Animal , Energy Metabolism , Extracellular Matrix/metabolism , Homeostasis , Mice , Myocardium/metabolism , Myocytes, Cardiac/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , Positron Emission Tomography Computed Tomography , Ventricular Remodeling
19.
Anal Sci ; 37(12): 1811-1814, 2021.
Article in English | MEDLINE | ID: mdl-34897180

ABSTRACT

Therapeutic oligonucleotides have recently been approved in the United States, the EU, and Japan. Hence, the analysis of oligonucleotides is an important topic in drug development. Liquid chromatographic techniques are commonly used for purity verification and the determination of oligonucleotides. In ion-pair reversed-phase separation, several parameters, such as the pore size of the stationary phase, mobile phase additives, and column temperature, were investigated using three types of oligonucleotides (18, 19, and 20 mer). All of the investigated parameters could influence the separation, and they are expected to be useful for optimizing oligonucleotide separation.


Subject(s)
Chromatography, Reverse-Phase , Oligonucleotides , Chromatography, Liquid , Japan , Temperature
20.
Transl Pediatr ; 10(9): 2287-2297, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34733669

ABSTRACT

BACKGROUND: Pulmonary artery acceleration time (PAAT) is a reliable and non-invasive method for assessing pulmonary hemodynamics. To date, few studies have used PAAT to assess preterm infants, especially those with respiratory distress syndrome (RDS). This study aimed to assess changes in PAAT among preterm infants with RDS undergoing pulmonary surfactant (PS) therapy or not, and determine its potential effects on the pulmonary vascular disease (PVD) outcomes of preterm infants with RDS in the late postnatal period. METHODS: The risk of RDS was reviewed in 62 preterm infants with a gestational age of 26-31 weeks. The infants receiving PS therapy were allocated to the PS group, and the others were allocated to the control group. PAAT, right ventricular ejection time (RVET), and other ultrasonic parameters at 3 different time points after birth were studied and compared. RESULTS: Infants in the PS group had a significantly lower PAAT (52.7±5.9 vs. 59.6±8.7; P=0.001) and PAAT/RVET (0.30±0.03 vs. 0.33±0.03; P=0.001) than those in the control group at 36 weeks postmenstrual age (PMA). No significant increases in PAAT/RVET were detected at 3 different times for the PS group (P=0.117), but both PAAT and PAAT/RVET increased significantly with time after birth in the control group (P<0.001). CONCLUSIONS: Preterm infants with RDS might still have PVD in the late postnatal period and thus require long-term follow-up observation. PAAT appears to be a reliable non-invasive screening measure for evaluating pulmonary hemodynamics in preterm infants with RDS and late PVD.

SELECTION OF CITATIONS
SEARCH DETAIL
...