Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 13(36): 8509-8515, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36066905

ABSTRACT

Photon upconversion luminescence at the molecule scale is a rarely observed phenomenon despite possessing colossal potential for basic research and reality applications. Here we show that the eight-coordinate erbium molecular complex composed of Er3+ ion, dibenzoylmethane, and 2,2'-bipyridine exhibits upconversion emission. Under direct excitation at the absorption band of Er3+ ion at 980 nm, the complex shows upconverted green emissions of Er3+ ion at 525 and 545 nm at room temperature. Noticeably, upon the introduction of fluoride ions into this complex, an additional upconverted red emission at 667 nm appears as well, and the luminescence intensities of both the green and red emissions increase by a factor of 13 at most. This study not only provides a strategy to adjust the green and red emissions in mononuclear erbium complexes but also broadens the horizons of designing lanthanide-based molecular upconversion systems.


Subject(s)
Erbium , Lanthanoid Series Elements , Luminescence , Temperature , Ytterbium
2.
Chem Asian J ; 17(17): e202200537, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35766792

ABSTRACT

Information encoding security has always been a research hotspot in the optical field. Although many studies focused on luminescent materials and techniques for information security, the optical information encoding is limited by low information capacity and security. Herein, we present new core-shell-shell (CSS) lanthanide-doped nanocrystals which display multi-stimuli-responsive and multimode emission. In the designed CSS nanostructure, the Stokes and anti-Stokes processes can be both achieved in the same nanocrystals under the excitation of 1532, 980, and 254 nm via self-excited Er3+ and Ce3+ -sensitized mechanisms. Subsequently, a group of unique multimode emission CSS nanocrystals were designed as optical modules and successfully utilized in multidimensional information encoding, which demonstrates high-level information encoding capability and security. This work brings a powerful idea for information encoding security designs based on multimode luminesce materials.


Subject(s)
Lanthanoid Series Elements , Nanoparticles , Nanostructures , Lanthanoid Series Elements/chemistry , Luminescence , Nanoparticles/chemistry
3.
Light Sci Appl ; 11(1): 150, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35595732

ABSTRACT

The continuously growing importance of information storage, transmission, and authentication impose many new demands and challenges for modern nano-photonic materials and information storage technologies, both in security and storage capacity. Recently, luminescent lanthanide-doped nanomaterials have drawn much attention in this field because of their photostability, multimodal/multicolor/narrowband emissions, and long luminescence lifetime. Here, we report a multimodal nanocomposite composed of lanthanide-doped upconverting nanoparticle and EuSe semiconductor, which was constructed by utilizing a cation exchange strategy. The nanocomposite can emit blue and white light under 365 and 394 nm excitation, respectively. Meanwhile, the nanocomposites show different colors under 980 nm laser excitation when the content of Tb3+ ions is changed in the upconversion nanoparticles. Moreover, the time-gating technology is used to filter the upconversion emission of a long lifetime from Tb3+ or Eu3+, and the possibilities for modulating the emission color of the nanocomposites are further expanded. Based on the advantage of multiple tunable luminescence, the nanocomposites are designed as optical modules to load optical information. This work enables multi-dimensional storage of information and provides new insights into the design and fabrication of next-generation storage materials.

4.
Nanoscale ; 13(43): 18300-18310, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34724017

ABSTRACT

Photothermal therapy has been considered a powerful means of cancer therapy due to its minimal invasiveness, effectiveness, and convenience. Although promising, the therapeutic effects are greatly limited as they rely on the photothermal agent (PTA). It is urgent to develop new PTAs with high photothermal conversion performance, especially under irradiation in the long-wavelength biowindows. Herein, a dual-biowindow-responsive PTA made of NbS2-PVP nanosheets was fabricated to be used both in the first near-infrared (NIR-I) and the second near-infrared (NIR-II) biowindows. With excellent hydrophilicity and biocompatibility, the nanosheets could effectively convert the near-infrared (NIR) light into heat, showing prominent photothermal stability. The calculated photothermal conversion efficiencies reached 59.2% (under NIR-I excitation) and 69.1% (under NIR-II excitation), respectively, which are comparable to those of metallic PTAs. The NbS2-PVP nanosheets had low cytotoxicity and could trigger strong photothermal treatment and cause cancer cell death upon irradiation by NIR-I or NIR-II light in vitro. Moreover, we have also demonstrated the highly efficient tissue ablation and tumor inhibition capability of NbS2-PVP nanosheets in vivo. This work explores an effective PTA of two-dimensional nanomaterials in NIR-I and NIR-II biowindows and offers a reference for the design of new kinds of PTAs.


Subject(s)
Nanostructures , Neoplasms , Humans , Neoplasms/therapy , Phototherapy , Photothermal Therapy
5.
Angew Chem Int Ed Engl ; 60(44): 23790-23796, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34476872

ABSTRACT

Modulating the emission wavelengths of materials has always been a primary focus of fluorescence technology. Nanocrystals (NCs) doped with lanthanide ions with rich energy levels can produce a variety of emissions at different excitation wavelengths. However, the control of multimodal emissions of these ions has remained a challenge. Herein, we present a new composition of Er3+ -based lanthanide NCs with color-switchable output under irradiation with 980, 808, or 1535 nm light for information security. The variation of excitation wavelengths changes the intensity ratio of visible (Vis)/near-infrared (NIR-II) emissions. Taking advantage of the Vis/NIR-II multimodal emissions of NCs and deep learning, we successfully demonstrated the storage and decoding of visible light information in pork tissue.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 177: 111-117, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28135696

ABSTRACT

We reported the upconversion luminescence (UCL) properties of Er3+-Yb3+ co-doped BiOCl semiconductor nanosheets synthesized by hydrothermal method. Under 980nm excitation, the red and green UCL of Er3+ ions were observed to be populated by a four and three-photon process in the case of absent or low concentration Yb3+ dopant. However, an increase of Yb3+ dopants show a completely opposite effect on the emission intensity of red and green one, accompanying with the change of upconverting process. It indicates that the red-shifting absorption edge of semiconductor and the super saturation UC processes involved with Yb3+ and Er3+ doping in BiOCl semiconductor nanosheets, respectively, are mainly responsible for the above UC phenomena.

SELECTION OF CITATIONS
SEARCH DETAIL
...