Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
Autophagy ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39193909

ABSTRACT

Individuals with genetic elimination of MLKL (mixed lineage kinase domain like pseudokinase) exhibit an increased susceptibility to neurodegenerative diseases like Alzheimer disease (AD). However, the mechanism is not yet fully understood. Here, we observed significant compromise in macroautophagy/autophagy in the brains of mlkl knockout (KO) mice, as evidenced by the downregulation of BECN1/Beclin1 and ULK1 (unc-51 like autophagy activating kinase 1). We identified UBA52 (ubiquitin A-52 residue ribosomal protein fusion product 1) as the binding partner of MLKL under physiological conditions. Loss of Mlkl induced a decrease in ubiquitin levels by preventing UBA52 cleavage. Furthermore, we demonstrated that the deubiquitinase (DUB) USP7 (ubiquitin specific peptidase 7) mediates the processing of UBA52, which is regulated by MLKL. Moreover, our results indicated that the reduction of BECN1 and ULK1 upon Mlkl loss is attributed to a decrease in their lysine 63 (K63)-linked polyubiquitination. Additionally, single-nucleus RNA sequencing revealed that the loss of Mlkl resulted in the disruption of multiple neurodegenerative disease-related pathways, including those associated with AD. These results were consistent with the observation of cognitive impairment in mlkl KO mice and exacerbation of AD pathologies in an AD mouse model with mlkl deletion. Taken together, our findings demonstrate that MLKL-USP7-UBA52 signaling is required for autophagy in brain through maintaining ubiquitin homeostasis, and highlight the contribution of Mlkl loss-induced ubiquitin deficits to the development of neurodegeneration. Thus, the maintenance of adequate levels of ubiquitin may provide a novel perspective to protect individuals from multiple neurodegenerative diseases through regulating autophagy.

2.
Adv Healthc Mater ; : e2401406, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007245

ABSTRACT

Tissue engineering for penile corpora cavernosa defects requires microvascular system reconstruction.GelMA hydrogels show promise for tissue regeneration. However, using stem cells faces challenges such as immune rejection, limited proliferation and differentiation, and biosafety concerns. Therefore, acellular tissue regeneration may avoid these issues. Exosomes are used from muscle-derived stem cells (MDSCs) to modify 3D-printed hydrogel scaffolds for acellular tissue regeneration. Hypoxia-preconditioned MDSC-derived exosomes are obtained to enhance the therapeutic effect. In contrast to normoxic exosomes (N-Exos), hypoxic exosomes (H-Exos) are found to markedly enhance the proliferation, migration, and capillary-like tube formation of human umbilical vein endothelial cells (HUVECs). High-throughput sequencing analysis of miRNAs isolated from both N-Exos and H-Exos revealed a significant upregulation of miR-21-5p in H-Exos following hypoxic preconditioning. Further validation demonstrated that the miR-21-5p/PDCD4 pathway promoted the proliferation of HUVECs. Epigallocatechin gallate (EGCG) is introduced to improve the mechanical properties and biocompatibility of GelMA hydrogels. EGCG-GelMA scaffolds loaded with different types of Exos are transplanted to repair rabbit penile corpora cavernosa defects, observed the blood flow and repair status of the defect site through color Doppler ultrasound and magnetic resonance imaging, and ultimately restored the rabbit penile erection function and successfully bred offspring. Thus, acellular hydrogel scaffolds offer an effective treatment for penile corpora cavernosa defects.

3.
Mol Psychiatry ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704506

ABSTRACT

Autism spectrum disorder (ASD) encompasses a range of neurodevelopmental conditions. Different mutations on a single ASD gene contribute to heterogeneity of disease phenotypes, possibly due to functional diversity of generated isoforms. SHANK2, a causative gene in ASD, demonstrates this phenomenon, but there is a scarcity of tools for studying endogenous SHANK2 proteins in an isoform-specific manner. Here, we report a point mutation on SHANK2, which is found in a patient with autism, located on exon of the SHANK2B transcript variant (NM_133266.5), hereby SHANK2BY29X. This mutation results in an early stop codon and an aberrant splicing event that impacts SHANK2 transcript variants distinctly. Induced pluripotent stem cells (iPSCs) carrying this mutation, from the patient or isogenic editing, fail to differentiate into functional dopamine (DA) neurons, which can be rescued by genetic correction. Available SMART-Seq single-cell data from human midbrain reveals the abundance of SHANK2B transcript in the ALDH1A1 negative DA neurons. We then show that SHANK2BY29X mutation primarily affects SHANK2B expression and ALDH1A1 negative DA neurons in vitro during early neuronal developmental stage. Mice knocked in with the identical mutation exhibit autistic-like behavior, decreased occupancy of ALDH1A1 negative DA neurons and decreased dopamine release in ventral tegmental area (VTA). Our study provides novel insights on a SHANK2 mutation derived from autism patient and highlights SHANK2B significance in ALDH1A1 negative DA neuron.

4.
Proc Natl Acad Sci U S A ; 121(18): e2310283121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38669183

ABSTRACT

Congenital scoliosis (CS), affecting approximately 0.5 to 1 in 1,000 live births, is commonly caused by congenital vertebral malformations (CVMs) arising from aberrant somitogenesis or somite differentiation. While Wnt/ß-catenin signaling has been implicated in somite development, the function of Wnt/planar cell polarity (Wnt/PCP) signaling in this process remains unclear. Here, we investigated the role of Vangl1 and Vangl2 in vertebral development and found that their deletion causes vertebral anomalies resembling human CVMs. Analysis of exome sequencing data from multiethnic CS patients revealed a number of rare and deleterious variants in VANGL1 and VANGL2, many of which exhibited loss-of-function and dominant-negative effects. Zebrafish models confirmed the pathogenicity of these variants. Furthermore, we found that Vangl1 knock-in (p.R258H) mice exhibited vertebral malformations in a Vangl gene dose- and environment-dependent manner. Our findings highlight critical roles for PCP signaling in vertebral development and predisposition to CVMs in CS patients, providing insights into the molecular mechanisms underlying this disorder.


Subject(s)
Carrier Proteins , Cell Polarity , Membrane Proteins , Spine , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/embryology , Humans , Mice , Cell Polarity/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Spine/abnormalities , Spine/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Scoliosis/genetics , Scoliosis/congenital , Scoliosis/metabolism , Wnt Signaling Pathway/genetics , Genetic Predisposition to Disease , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Female
5.
Contemp Clin Trials Commun ; 38: 101275, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38435428

ABSTRACT

Background: Interventions to reduce loneliness in older adults usually do not show sustained effects. One potential way to combat loneliness is to offer meaningful social activities. Volunteering has been suggested as one such activity - however, its effects on loneliness remain to be tested in randomized controlled trials (RCT). Methods: This planned Dual-RCT aims to recruit older adults experiencing loneliness, with subsequent randomization to either a volunteering condition (6 weeks of training before delivering one of three tele-based loneliness interventions to older intervention recipients twice a week for 6 months) or to an active control condition (psycho-education with social gatherings for six months). Power analyses require the recruitment of N = 256 older adults to detect differences between the volunteering and the active control condition (128 in each) on the primary outcome of loneliness (UCLA Loneliness Scale). Secondary outcomes comprise social network engagement, perceived social support, anxiety and depressive symptoms, self-rated health, cognitive health, perceived stress, sleep quality, and diurnal cortisol (1/3 of the sample). The main analyses will comprise condition (volunteering vs. no-volunteering) × time (baseline, 6-, 12-, 18-, 24-months follow-ups) interactions to test the effects of volunteering on loneliness and secondary outcomes. Effects are expected to be mediated via frequency, time and involvement in volunteering. Discussion: If our trial can show that volunteers delivering one of the three telephone-based interventions to lonely intervention recipients benefit from volunteer work themselves, this might encourage more older adults to volunteer, helping to solve some of the societal issues involved with rapid demographic changes.

6.
Elife ; 122024 Jan 26.
Article in English | MEDLINE | ID: mdl-38277211

ABSTRACT

Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than fivefold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here, we sought to define the roles of PAX1 and newly identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals with AIS and 93,238 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); p=7.07E-11, OR = 1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the intervertebral disc-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1-/- spines compared to wild-type. By genetic targeting we found that wild-type Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, the latter suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2 or tamoxifen treatment significantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a PAX1-COL11a1-MMP3 signaling axis in spinal chondrocytes.


Adolescent idiopathic scoliosis (AIS) is a twisting deformity of the spine that occurs during periods of rapid growth in children worldwide. Children with severe cases of AIS require surgery to stop it from getting worse, presenting a significant financial burden to health systems and families. Although AIS is known to cluster in families, its genetic causes and its inheritance pattern have remained elusive. Additionally, AIS is known to be more prevalent in females, a bias that has not been explained. Advances in techniques to study the genetics underlying diseases have revealed that certain variations that increase the risk of AIS affect cartilage and connective tissue. In humans, one such variation is near a gene called Pax1, and it is female-specific. The extracellular matrix is a network of proteins and other molecules in the space between cells that help connect tissues together, and it is particularly important in cartilage and other connective tissues. One of the main components of the extracellular matrix is collagen. Yu, Kanshour, Ushiki et al. hypothesized that changes in the extracellular matrix could affect the cartilage and connective tissues of the spine, leading to AIS. To show this, the scientists screened over 100,000 individuals and found that AIS is associated with variants in two genes coding for extracellular matrix proteins. One of these variants was found in a gene called Col11a1, which codes for one of the proteins that makes up collagen. To understand the relationship between Pax1 and Col11a1, Yu, Kanshour, Ushiki et al. genetically modified mice so that they would lack the Pax1 gene. In these mice, the activation of Col11a1 was reduced in the mouse spine. They also found that the form of Col11a1 associated with AIS could not suppress the activation of a gene called Mmp3 in mouse cartilage cells as effectively as unmutated Col11a1. Going one step further, the researchers found that lowering the levels of an estrogen receptor altered the activation patterns of Pax1, Col11a1, and Mmp3 in mouse cartilage cells. These findings suggest a possible mechanism for AIS, particularly in females. The findings of Yu, Kanshour, Ushiki et al. highlight that cartilage cells in the spine are particularly relevant in AIS. The results also point to specific molecules within the extracellular matrix as important for maintaining proper alignment in the spine when children are growing rapidly. This information may guide future therapies aimed at maintaining healthy spinal cells in adolescent children, particularly girls.


Subject(s)
Scoliosis , Male , Animals , Child , Mice , Humans , Female , Adolescent , Scoliosis/genetics , Matrix Metalloproteinase 3/genetics , Spine , Transcription Factors/genetics , Collagen/genetics , Genetic Variation , Collagen Type XI/genetics
7.
J Leukoc Biol ; 115(4): 633-646, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38066571

ABSTRACT

Oncolytic virotherapy is an innovative approach for cancer treatment. However, recruitment of myeloid-derived suppressor cells (MDSCs) into the tumor microenvironment (TME) after oncolysis-mediated local inflammation leads to tumor resistance to the therapy. Using the murine malignant mesothelioma model, we demonstrated that the in situ vaccinia virotherapy recruited primarily polymorphonuclear MDSCs (PMN-MDSCs) into the TME, where they exhibited strong suppression of cytotoxic T lymphocytes in a reactive oxygen species-dependent way. Single-cell RNA sequencing analysis confirmed the suppressive profile of PMN-MDSCs at the transcriptomic level and identified CXCR2 as a therapeutic target expressed on PMN-MDSCs. Abrogating PMN-MDSC trafficking by CXCR2-specific small molecule inhibitor during the vaccinia virotherapy exhibited enhanced antitumor efficacy in 3 syngeneic cancer models, through increasing CD8+/MDSC ratios in the TME, activating cytotoxic T lymphocytes, and skewing suppressive TME into an antitumor environment. Our results warrant clinical development of CXCR2 inhibitor in combination with oncolytic virotherapy.


Subject(s)
Myeloid-Derived Suppressor Cells , Oncolytic Virotherapy , Vaccinia , Animals , Mice , Cell Line, Tumor , Myeloid-Derived Suppressor Cells/pathology , T-Lymphocytes, Cytotoxic , Tumor Microenvironment , Vaccinia/pathology , Vaccinia virus
8.
J Clin Invest ; 134(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-37962965

ABSTRACT

Adolescent idiopathic scoliosis (AIS) is the most common form of spinal deformity, affecting millions of adolescents worldwide, but it lacks a defined theory of etiopathogenesis. Because of this, treatment of AIS is limited to bracing and/or invasive surgery after onset. Preonset diagnosis or preventive treatment remains unavailable. Here, we performed a genetic analysis of a large multicenter AIS cohort and identified disease-causing and predisposing variants of SLC6A9 in multigeneration families, trios, and sporadic patients. Variants of SLC6A9, which encodes glycine transporter 1 (GLYT1), reduced glycine-uptake activity in cells, leading to increased extracellular glycine levels and aberrant glycinergic neurotransmission. Slc6a9 mutant zebrafish exhibited discoordination of spinal neural activities and pronounced lateral spinal curvature, a phenotype resembling human patients. The penetrance and severity of curvature were sensitive to the dosage of functional glyt1. Administration of a glycine receptor antagonist or a clinically used glycine neutralizer (sodium benzoate) partially rescued the phenotype. Our results indicate a neuropathic origin for "idiopathic" scoliosis, involving the dysfunction of synaptic neurotransmission and central pattern generators (CPGs), potentially a common cause of AIS. Our work further suggests avenues for early diagnosis and intervention of AIS in preadolescents.


Subject(s)
Scoliosis , Animals , Humans , Adolescent , Scoliosis/genetics , Scoliosis/diagnosis , Scoliosis/surgery , Glycine/genetics , Zebrafish , Synaptic Transmission
9.
EBioMedicine ; 98: 104877, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37980794

ABSTRACT

BACKGROUND: HIV-1-associated immune activation drives CD4+ T cell depletion and the development of acquired immunodeficiency syndrome. We aimed to determine the role of nicotinamide mononucleotide (NMN), the direct precursor of nicotinamide adenine dinucleotide (NAD) co-enzyme, in CD4+ T cell modulation during HIV-1 infection. METHODS: We examined HIV-1 integrated DNA or transcribed RNA, intracellular p24 protein, and T cell activation markers in CD4+ T cells including in vitro HIV-1-infected cells, reactivated patient-derived cells, and in HIV-1-infected humanized mice, under NMN treatment. RNA-seq and CyTOF analyses were used for investigating the effect of NMN on CD4+ T cells. FINDINGS: We found that NMN increased the intracellular NAD amount, resulting in suppressed HIV-1 p24 production and proliferation in infected CD4+ T cells, especially in activated CD25+CD4+ T cells. NMN also inhibited CD25 expression on reactivated resting CD4+ T cells derived from cART-treated people living with HIV-1 (PLWH). In HIV-1-infected humanized mice, the frequency of CD4+ T cells was reconstituted significantly by combined cART and NMN treatment as compared with cART or NMN alone, which correlated with suppressed hyperactivation of CD4+ T cells. INTERPRETATION: Our results highlight the suppressive role of NMN in CD4+ T cell activation during HIV-1 infection. It warrants future clinical investigation of NMN as a potential treatment in combination with cART in PLWH. FUNDING: This work was supported by the Hong Kong Research Grants Council Theme-Based Research Scheme (T11-706/18-N), University Research Committee of The University of Hong Kong, the Collaborative Research with GeneHarbor (Hong Kong) Biotechnologies Limited and National Key R&D Program of China (Grant2021YFC2301900).


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Mice , Humans , Animals , NAD/metabolism , Nicotinamide Mononucleotide/metabolism , Nicotinamide Mononucleotide/pharmacology , HIV-1/metabolism , T-Lymphocytes/metabolism
10.
Emerg Microbes Infect ; 12(2): 2245921, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37542391

ABSTRACT

Prevention of robust severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in nasal turbinate (NT) requires in vivo evaluation of IgA neutralizing antibodies. Here, we report the efficacy of receptor binding domain (RBD)-specific monomeric B8-mIgA1 and B8-mIgA2, and dimeric B8-dIgA1, B8-dIgA2 and TH335-dIgA1 against intranasal SARS-CoV-2 challenge in Syrian hamsters. These antibodies exhibited comparable neutralization potency against authentic virus by competing with human angiotensin converting enzyme-2 (ACE2) receptor for RBD binding. While reducing viral loads in lungs significantly, prophylactic intranasal B8-dIgA unexpectedly led to high amount of infectious viruses and extended damage in NT compared to controls. Mechanistically, B8-dIgA failed to inhibit SARS-CoV-2 cell-to-cell transmission, but was hijacked by the virus through dendritic cell-mediated trans-infection of NT epithelia leading to robust nasal infection. Cryo-EM further revealed B8 as a class II antibody binding trimeric RBDs in 3-up or 2-up/1-down conformation. Neutralizing dIgA, therefore, may engage an unexpected mode of SARS-CoV-2 nasal infection and injury.


Subject(s)
COVID-19 , Common Cold , Cricetinae , Animals , Humans , SARS-CoV-2 , Mesocricetus , Antibodies, Viral , Antibodies, Neutralizing , Immunoglobulin A , Spike Glycoprotein, Coronavirus
11.
bioRxiv ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37292598

ABSTRACT

Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than five-fold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here we sought to define the roles of PAX1 and newly-identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals with AIS and 93,238 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); P=7.07e-11, OR=1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the intervertebral disc (IVD)-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1-/- spines compared to wildtype. By genetic targeting we found that wildtype Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, this suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2, or tamoxifen treatment, significantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a Pax1-Col11a1-Mmp3 signaling axis in spinal chondrocytes.

12.
J Ginseng Res ; 47(3): 448-457, 2023 May.
Article in English | MEDLINE | ID: mdl-37252274

ABSTRACT

Background: Alzheimer's disease (AD) is a common form of dementia, and impaired mitophagy is a hallmark of AD. Mitophagy is mitochondrial-specific autophagy. Ginsenosides from Ginseng involve in autophagy in cancer. Ginsenoside Rg1 (Rg1 hereafter), a single compound of Ginseng, has neuroprotective effects on AD. However, few studies have reported whether Rg1 can ameliorate AD pathology by regulating mitophagy. Methods: Human SH-SY5Y cell and a 5XFAD mouse model were used to investigate the effects of Rg1. Rg1 (1µM) was added to ß-amyloid oligomer (AßO)-induced or APPswe-overexpressed cell models for 24 hours. 5XFAD mouse models were intraperitoneally injected with Rg1 (10 mg/kg/d) for 30 days. Expression levels of mitophagy-related markers were analyzed by western blot and immunofluorescent staining. Cognitive function was assessed by Morris water maze. Mitophagic events were observed using transmission electron microscopy, western blot, and immunofluorescent staining from mouse hippocampus. The activation of the PINK1/Parkin pathway was examined using an immunoprecipitation assay. Results: Rg1 could restore mitophagy and ameliorate memory deficits in the AD cellular and/or mouse model through the PINK1-Parkin pathway. Moreover, Rg1 might induce microglial phagocytosis to reduce ß-amyloid (Aß) deposits in the hippocampus of AD mice. Conclusion: Our studies demonstrate the neuroprotective mechanism of ginsenoside Rg1 in AD models. Rg1 induces PINK-Parkin mediated mitophagy and ameliorates memory deficits in 5XFAD mouse models.

13.
CNS Neurosci Ther ; 29(7): 1848-1864, 2023 07.
Article in English | MEDLINE | ID: mdl-36880288

ABSTRACT

INTRODUCTION AND AIMS: Alzheimer's disease (AD) is characterized by the abnormal accumulation of hyperphosphorylated tau proteins and amyloid-beta (Aß) peptides. Recent studies have shown that many microRNAs (miRNAs) are dysregulated in AD, and modulation of these miRNAs can influence the development of tau and Aß pathology. The brain-specific miRNA miR-128, encoded by MIR128-1 and MIR128-2, is important for brain development and dysregulated in AD. In this study, the role of miR-128 in tau and Aß pathology as well as the regulatory mechanism underlying its dysregulation were investigated. METHODS: The effect of miR-128 on tau phosphorylation and Aß accumulation was examined in AD cellular models through miR-128 overexpression and inhibition. The therapeutic potential of miR-128 in AD mouse model was assessed by comparing phenotypes of 5XFAD mice administered with miR-128-expressing AAVs with 5XFAD mice administered with control AAVs. Phenotypes examined included behavior, plaque load, and protein expression. The regulatory factor of miR-128 transcription was identified through luciferase reporter assay and validated by siRNA knockdown and ChIP analysis. RESULTS: Both gain-of-function and loss-of-function studies in AD cellular models reveal that miR-128 represses tau phosphorylation and Aß secretion. Subsequent investigations show that miR-128 directly inhibits the expression of tau phosphorylation kinase GSK3ß and Aß modulators APPBP2 and mTOR. Upregulation of miR-128 in the hippocampus of 5XFAD mice ameliorates learning and memory impairments, decreases plaque deposition, and enhances autophagic flux. We further demonstrated that C/EBPα transactivates MIR128-1 transcription, while both C/EBPα and miR-128 expression are inhibited by Aß. CONCLUSION: Our findings suggest that miR-128 suppresses AD pathogenesis, and could be a promising therapeutic target for AD. We also find a possible mechanism underlying the dysregulation of miR-128 in AD, in which Aß reduces miR-128 expression by inhibiting C/EBPα.


Subject(s)
Alzheimer Disease , MicroRNAs , Mice , Animals , Alzheimer Disease/metabolism , MicroRNAs/metabolism , Phosphorylation , Glycogen Synthase Kinase 3 beta , Mice, Transgenic , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Disease Models, Animal , TOR Serine-Threonine Kinases/metabolism
14.
Gut ; 72(8): 1568-1580, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36450387

ABSTRACT

OBJECTIVE: Immune checkpoint blockade (ICB) has improved cancer treatment, yet why most hepatocellular carcinoma (HCC) patients are resistant to PD-1 ICB remains elusive. Here, we elucidated the role of a programmed cell death protein 1 (PD-1) isoform, Δ42PD-1, in HCC progression and resistance to nivolumab ICB. DESIGN: We investigated 74 HCC patients in three cohorts, including 41 untreated, 28 treated with nivolumab and 5 treated with pembrolizumab. Peripheral blood mononuclear cells from blood samples and tumour infiltrating lymphocytes from tumour tissues were isolated for immunophenotyping. The functional significance of Δ42PD-1 was explored by single-cell RNA sequencing analysis and validated by functional and mechanistic studies. The immunotherapeutic efficacy of Δ42PD-1 monoclonal antibody was determined in HCC humanised mouse models. RESULTS: We found distinct T cell subsets, which did not express PD-1 but expressed its isoform Δ42PD-1, accounting for up to 71% of cytotoxic T lymphocytes in untreated HCC patients. Δ42PD-1+ T cells were tumour-infiltrating and correlated positively with HCC severity. Moreover, they were more exhausted than PD-1+ T cells by single T cell and functional analysis. HCC patients treated with anti-PD-1 ICB showed effective PD-1 blockade but increased frequencies of Δ42PD-1+ T cells over time especially in patients with progressive disease. Tumour-infiltrated Δ42PD-1+ T cells likely sustained HCC through toll-like receptors-4-signalling for tumourigenesis. Anti-Δ42PD-1 antibody, but not nivolumab, inhibited tumour growth in three murine HCC models. CONCLUSION: Our findings not only revealed a mechanism underlying resistance to PD-1 ICB but also identified anti-Δ42PD-1 antibody for HCC immunotherapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Leukocytes, Mononuclear , Immunosuppression Therapy , Immune Tolerance , Immunotherapy , Nivolumab/therapeutic use , CD8-Positive T-Lymphocytes
15.
Signal Transduct Target Ther ; 7(1): 392, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36529763

ABSTRACT

Horseshoe bats host numerous SARS-related coronaviruses without overt disease signs. Bat intestinal organoids, a unique model of bat intestinal epithelium, allow direct comparison with human intestinal organoids. We sought to unravel the cellular mechanism(s) underlying bat tolerance of coronaviruses by comparing the innate immunity in bat and human organoids. We optimized the culture medium, which enabled a consecutive passage of bat intestinal organoids for over one year. Basal expression levels of IFNs and IFN-stimulated genes were higher in bat organoids than in their human counterparts. Notably, bat organoids mounted a more rapid, robust and prolonged antiviral defense than human organoids upon Poly(I:C) stimulation. TLR3 and RLR might be the conserved pathways mediating antiviral response in bat and human intestinal organoids. The susceptibility of bat organoids to a bat coronavirus CoV-HKU4, but resistance to EV-71, an enterovirus of exclusive human origin, indicated that bat organoids adequately recapitulated the authentic susceptibility of bats to certain viruses. Importantly, TLR3/RLR inhibition in bat organoids significantly boosted viral growth in the early phase after SARS-CoV-2 or CoV-HKU4 infection. Collectively, the higher basal expression of antiviral genes, especially more rapid and robust induction of innate immune response, empowered bat cells to curtail virus propagation in the early phase of infection.


Subject(s)
COVID-19 , Chiroptera , Virus Diseases , Animals , Humans , Chiroptera/genetics , Antiviral Agents/pharmacology , Toll-Like Receptor 3/genetics , SARS-CoV-2 , Organoids , Immunosuppression Therapy
16.
Clin Transl Med ; 12(9): e1025, 2022 09.
Article in English | MEDLINE | ID: mdl-36103567

ABSTRACT

BACKGROUND: Patients with COVID-19 display a broad spectrum of manifestations from asymptomatic to life-threatening disease with dysregulated immune responses. Mechanisms underlying the detrimental immune responses and disease severity remain elusive. METHODS: We investigated a total of 137 APs infected with SARS-CoV-2. Patients were divided into mild and severe patient groups based on their requirement of oxygen supplementation. All blood samples from APs were collected within three weeks after symptom onset. Freshly isolated PBMCs were investigated for B cell subsets, their homing potential, activation state, mitochondrial functionality and proliferative response. Plasma samples were tested for cytokine concentration, and titer of Nabs, RBD-, S1-, SSA/Ro- and dsDNA-specific IgG. RESULTS: While critically ill patients displayed predominantly extrafollicular B cell activation with elevated inflammation, mild patients counteracted the disease through the timely induction of mitochondrial dysfunction in B cells within the first week post symptom onset. Rapidly increased mitochondrial dysfunction, which was caused by infection-induced excessive intracellular calcium accumulation, suppressed excessive extrafollicular responses, leading to increased neutralizing potency index and decreased inflammatory cytokine production. Patients who received prior COVID-19 vaccines before infection displayed significantly decreased extrafollicular B cell responses and mild disease. CONCLUSION: Our results reveal an immune mechanism that controls SARS-CoV-2-induced detrimental B cell responses and COVID-19 severity, which may have implications for viral pathogenesis, therapeutic interventions and vaccine development.


Subject(s)
COVID-19 , Viral Vaccines , B-Lymphocytes , COVID-19 Vaccines , Cytokines , Humans , Mitochondria , SARS-CoV-2 , Severity of Illness Index , Viral Vaccines/pharmacology
17.
Front Aging Neurosci ; 14: 964336, 2022.
Article in English | MEDLINE | ID: mdl-35966777

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia. Although previous studies have selectively investigated the localization of amyloid-beta (Aß) deposition in certain brain regions, a comprehensive characterization of the rostro-caudal distribution of Aß plaques in the brain and their inter-regional correlation remain unexplored. Our results demonstrated remarkable working and spatial memory deficits in 9-month-old 5xFAD mice compared to wildtype mice. High Aß plaque load was detected in the somatosensory cortex, piriform cortex, thalamus, and dorsal/ventral hippocampus; moderate levels of Aß plaques were observed in the motor cortex, orbital cortex, visual cortex, and retrosplenial dysgranular cortex; and low levels of Aß plaques were located in the amygdala, and the cerebellum; but no Aß plaques were found in the hypothalamus, raphe nuclei, vestibular nucleus, and cuneate nucleus. Interestingly, the deposition of Aß plaques was positively associated with brain inter-regions including the prefrontal cortex, somatosensory cortex, medial amygdala, thalamus, and the hippocampus. In conclusion, this study provides a comprehensive morphological profile of Aß deposition in the brain and its inter-regional correlation. This suggests an association between Aß plaque deposition and specific brain regions in AD pathogenesis.

18.
Nucleic Acids Res ; 50(6): e34, 2022 04 08.
Article in English | MEDLINE | ID: mdl-34931221

ABSTRACT

Identifying rare variants that contribute to complex diseases is challenging because of the low statistical power in current tests comparing cases with controls. Here, we propose a novel and powerful rare variants association test based on the deviation of the observed mutation burden of a gene in cases from a baseline predicted by a weighted recursive truncated negative-binomial regression (RUNNER) on genomic features available from public data. Simulation studies show that RUNNER is substantially more powerful than state-of-the-art rare variant association tests and has reasonable type 1 error rates even for stratified populations or in small samples. Applied to real case-control data, RUNNER recapitulates known genes of Hirschsprung disease and Alzheimer's disease missed by current methods and detects promising new candidate genes for both disorders. In a case-only study, RUNNER successfully detected a known causal gene of amyotrophic lateral sclerosis. The present study provides a powerful and robust method to identify susceptibility genes with rare risk variants for complex diseases.


Subject(s)
Genetic Predisposition to Disease , Genetic Variation , Models, Genetic , Software , Case-Control Studies , Computer Simulation , Humans , Mutation
19.
Psychogeriatrics ; 22(1): 84-98, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34729865

ABSTRACT

BACKGROUND: Mild behavioural impairment (MBI) is a neurobehavioural syndrome characterised by later life emergence of persistent neuropsychiatric symptoms. Our previous meta-analysis showed that MBI is prevalent among cognitively normal (CN), subjective cognitive impairment (SCI) and mild cognitive impairment (MCI) subjects. This study is to calculate the pooled prevalence of MBI domains among CN, SCI, and MCI subjects. METHODS: A search of relevant literature published between 1 January 2003 and 6 August 2021 was conducted. Meta-analysis using a random effects model and meta-regression was performed. RESULTS: Ten studies conducted among 12 067 subjects (9758 CN, 1057 SCI and 1252 MCI) with retrievable MBI domains data underwent meta-analysis, revealing pooled prevalence of affective dysregulation (AFD), impulse dyscontrol (IDS), decreased motivation (DMT), social inappropriateness (SIP) and abnormal perception/thought (APT) of 32.84% (95% CI 24.44-42.5%), 26.67% (95% CI 18.24-37.23%), 12.58% (95% CI 6.93-21.75%), 6.05% (95% CI 3.44-10.42%), and 2.81% (95% CI 1.67-4.69%) respectively. AFD and APT domains demonstrated ordinal increase in pooled prevalence from CN, SCI and MCI subgroups, but meta-regression demonstrated no significant difference in MBI domains prevalence among cognitive subgroups (in contrast to the significant increase in MBI prevalence from CN to SCI to MCI). The pooled prevalence of AFD and IDS are greater than that of DMT, SIP and APT among all cognitive subgroups. Several variables were found to explain the high heterogeneity. CONCLUSIONS: AFD and IDS are the two most prevalent MBI domains and remain the same with cognitive deterioration. This finding is potentially relevant to clinical practice.


Subject(s)
Cognition Disorders , Cognitive Dysfunction , Cognitive Dysfunction/epidemiology , Humans , Prevalence
20.
Oxid Med Cell Longev ; 2021: 7716201, 2021.
Article in English | MEDLINE | ID: mdl-34707778

ABSTRACT

BACKGROUND: The depressive symptom hallmarks the progression of the neurodegenerative diseases, especially Alzheimer's disease. Bacterial infection is related to inflammation and depression. The present project thereby examined whether botanical drug puerarin could attenuate liposaccharide- (LPS-) induced depressive behaviors in mice. METHODS: Adult male C57BL/6N mice were sequentially treated with LPS and puerarin and evaluated for the depressive behaviors by tail suspension test and forced swim test. The brain tissues were profiled for the molecular targets of puerarin by next-generation RNA sequencing technique. Candidate targets were further verified in LPS-treated mice, neural stem cells, and highly differentiated PC12 cell line. RESULTS: Puerarin ameliorated LPS-induced depression in the mice. RNA sequencing profiles revealed that puerarin altered the expression of 16 genes while markedly downregulated Ras-related GTP-binding protein A (RagA) in LPS-treated mice. The effect of puerarin on RagA expression was confirmed by immunostaining, Western blot, and quantitative real-time PCR (qRT-PCR). Biochemical studies showed that puerarin inhibited RagA/mTOR/p70S6K pathway, attenuated the accumulation of mTORC1 in close proximity to lysosome, and reduced the production of proinflammatory cytokines. CONCLUSIONS: Botanical drug puerarin attenuated inflammation and depressive behaviors in LPS-challenged mice by inhibiting RagA/mTOR/p70S6K pathways. Puerarin may be a lead compound for the new antidepressant drugs.


Subject(s)
Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Brain/drug effects , Depression/prevention & control , Isoflavones/pharmacology , Monomeric GTP-Binding Proteins/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Brain/enzymology , Brain/physiopathology , Cytokines/metabolism , Depression/chemically induced , Depression/enzymology , Depression/physiopathology , Disease Models, Animal , Inflammation Mediators/metabolism , Lipopolysaccharides , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Inbred C57BL , Monomeric GTP-Binding Proteins/genetics , Neural Stem Cells/drug effects , Neural Stem Cells/enzymology , Neurons/drug effects , Neurons/enzymology , PC12 Cells , Rats , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL