Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Food Nutr Res ; 662022.
Article in English | MEDLINE | ID: mdl-35382382

ABSTRACT

Background: Globally, obesity is a significant public problem, especially when aging. Sesamol, a phenolic lignan present in sesame seeds, might have a positive effect on high-fat diet (HFD)-induced obesity associated with aging. Objective: The purpose of current research study was to explore salutary effects and mechanisms of sesamol in treating alimentary obesity and associated metabolic syndrome in middle-aged mice. Methods: C57BL/6J mice aged 4-6 weeks and 6-8 months were assigned to the young normal diet group, middle-aged normal diet group, middle-aged HFD group, and middle-aged HFD + sesamol group. At the end of experiment, glucose tolerance test and insulin tolerance test were performed; the levels of lipids and oxidative stress-related factors in the serum and skeletal muscle were detected using chemistry reagent kits; lipid accumulation in skeletal muscle was observed by oil red O staining; the expressions of muscular glucose and lipid metabolism associated proteins were measured by Western blotting. Results: Sesamol decreased the body weight and alleviated obesity-associated metabolism syndrome in middle-aged mice, such as glucose intolerance, insulin resistance, dyslipidemia, and oxidative stress. Moreover, muscular metabolic disorders were attenuated after treatment with sesamol. It increased the expression of glucose transporter type-4 and down-regulated the protein levels of pyruvate dehydrogenase kinase isozyme 4, implying the increase of glucose uptake and oxidation. Meanwhile, sesamol decreased the expression of sterol regulatory element binding protein 1c and up-regulated the phosphorylation of hormone-sensitive lipase and the level of carnitine palmityl transferase 1α, which led to the declined lipogenesis and the increased lipolysis and lipid oxidation. In addition, the SIRT1/AMPK signaling pathway was triggered by sesamol, from which it is understood how sesamol enhances glucose and lipid metabolism. Conclusions: Sesamol counteracts on metabolic disorders of middle-aged alimentary obese mice through regulating skeletal muscle glucose and lipid metabolism, which might be associated with the stimulation of the SIRT1/AMPK pathway.

2.
J Agric Food Chem ; 70(7): 2253-2264, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35166533

ABSTRACT

Obesity can evoke changes of skeletal muscle structure and function, which are characterized by the conversion of myofiber from type I to type II, leading to a vicious cycle of metabolic disorders. Reversing the muscle fiber-type conversion in obese states is a novel strategy for treating those with obesity. Sesamol, a food ingredient compound isolated from sesame seeds, exerted potential antiobesity effects. The present research aimed to explore the therapeutic effects of sesamol on obesity-related skeletal muscle-fiber-type conversion and elucidate the underlying molecular mechanisms through utilizing a high-fat-diet-induced obese C57BL/6J mice model and palmitic acid-exposed C2C12 myotubes. The results showed that sesamol attenuated obesity-related metabolic disturbances, elevated exercise endurance of obese mice, and decreased lipid accumulation and insulin resistance in skeletal muscle. After the treatment with sesamol, the muscular mitochondrial content and biogenesis were increased, accompanied by the enzyme activities and myosin heavy-chain isoform changed from type II fiber to type I fiber. Mechanistic studies revealed that the effects of sesamol on reversing skeletal muscle-fiber-type conversion in obese states were associated with the stimulation of the muscular sirtuin 1 (SIRT1)/AMP-activated protein kinase (AMPK) signal pathway, and these effects could be inhibited by a specific inhibitor of SIRT1, EX-527. In conclusion, our research provided novel evidence that sesamol could regulate myofiber-type conversion to treat obesity and obesity-related metabolic disorders by stimulating the muscular SIRT1/AMPK signal pathway.


Subject(s)
AMP-Activated Protein Kinases , Sirtuin 1 , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Benzodioxoles , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Obesity/metabolism , Phenols , Signal Transduction , Sirtuin 1/genetics , Sirtuin 1/metabolism
3.
Medicine (Baltimore) ; 101(52): e32555, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36596057

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related burden and deaths, thus effective treatment strategies with lower side effects for NSCLC are urgently needed. To systematically analyze the mechanism of Bai He Gu Jin Tang (BHGJT) against NSCLC by network pharmacology and molecular docking. METHODS: The active compounds of BHGJT were obtained by searching the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine and Encyclopaedia of Traditional Chinese Medicine. Search tool for interactions of chemicals was used for acquiring the targets of BHGJT. The component-target network was mapped by Cytoscape. NSCLC-related genes were obtained by searching Genecards, DrugBank and Therapeutic Target Database. The protein-protein interaction network of intersection targets was established based on Search Tool for Recurring Instances of Neighboring Genes (STRING), and further, the therapeutic core targets were selected by topological parameters. The hub targets were transmitted to Database for Annotation, Visualization and Integrated Discovery for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Finally, AutoDock Vina and MglTools were employed for molecular docking validation. RESULTS: Two hundred fifty-six compounds and 237 putative targets of BHGJT-related active compounds as well as 1721potential targets of NSCLC were retrieved. Network analysis showed that 8 active compounds of BHGJT including kaempferol, quercetin, luteolin, isorhamnetin, beta-sitosterol, stigmasterol, mairin and liquiritigenin as well as 15 hub targets such as AKR1B10 and AKR1C2 contribute to the treatment of BHGJT against NSCLC. GO functional enrichment analysis shows that BHGJT could regulate many biological processes, such as apoptotic process. Three modules of the endocrine related pathways including the inflammation, hypoxia related pathways as well as the other cancer related pathways based on Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis might explain the biological mechanisms of BHGJT in treating BHGJT. The results of molecular docking verified that AKR1B10 and AKR1C2 had the strongest binding activity with the 8 key compounds of NSCLC. CONCLUSION: Our study reveals the mechanism of BHGJT in treating NSCLC involving multiple components, multiple targets and multiple pathways. The present study laid an initial foundation for the subsequent research and clinical application of BHGJT and its active compounds against NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drugs, Chinese Herbal , Lung Neoplasms , Male , Humans , Molecular Docking Simulation , Network Pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Neoplasm Recurrence, Local , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional
4.
J Hazard Mater ; 274: 53-62, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24762701

ABSTRACT

Sulfur dioxide from flue gas was converted into sulfate after the absorption of alkaline solutions. Haloalkaliphilic microorganisms have been used in reducing sulfate to decrease expenses and avoid sulfide inhibition. The effects of different COD/SO4(2-) ratios and hydraulic retention times (HRTs) on the sulfate removal efficiency and bacterial community were investigated in model experiments. Ethanol showed better performance as an electron donor than lactate. The optimum COD/SO4(2-) ratio and HRT were 4.0 and 18 h, respectively, with respective sulfate removal efficiency and rate of 97.8 ± 1.11% and 6.26 ± 0.0710 g/Ld. Sulfide concentrations reached 1,603 ± 3.38 mg/L. Based on denaturing gradient gel electrophoresis analysis of 16S rDNA, the major sulfate-reducing bacterium (SRB) was Desulfonatronovibrio sp., which was only detected at a COD/SO4(2-) ratio of 4.0 using ethanol as an electron donor. Different HRTs had no significant effect on the band corresponding to this species. PCR results show that methane-producing archaea (MPA) were from the acetoclastic methanogenic family Methanosarcinaceae. Quantitative real-time PCR did not demonstrate any significant competition between SRB and MPA. The findings of this study indicate that sulfate reduction, nitrate reduction, and sulfide oxidization may occur in the same bioreactor.


Subject(s)
Bacteria/metabolism , Bioreactors , Methanosarcinaceae/metabolism , Sulfates/metabolism , Bacteria/classification , Bacteria/genetics , Biological Oxygen Demand Analysis , DNA, Archaeal/genetics , DNA, Bacterial/genetics , DNA, Ribosomal , Methanosarcinaceae/genetics , Nitrates/metabolism , Sulfides/metabolism
5.
Bioresour Technol ; 153: 216-22, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24368270

ABSTRACT

Effects of NO3(-)/SO4(2-) ratio on denitrification and sulfate removal efficiency were investigated in model experiments applying haloalkaliphilic bioreactor. The reduction of both substrates performed well at different NO3(-)/SO4(2-) ratios ranging from 17.6 to l.5. The removal rates of nitrate and sulfate were 6 and 1.39kgm(-3)d(-1), respectively, at NO3(-)/SO4(2-) ratio 3.0, while sulfide concentration reached up to 703gm(-3). The major sulfate-reducing and denitrifying bacteria were Desulfonatronovibrio sp. and Halomonas campisalis, respectively. Decrease in NO3(-)/SO4(2-) ratio led to obvious changes in bacterial community. Although the sulfate reducers became dominant, the population of denitrifying ones also increased as it was demonstrated by analysis of PCR-amplified 16S rDNA fragments, which suggested that SRB and DB coexisted well in bioreactor.


Subject(s)
Alkalies/pharmacology , Bioreactors/microbiology , Halogens/pharmacology , Nitrates/pharmacology , Sulfates/pharmacology , Bacteria/drug effects , Bacteria/genetics , Bacteria/growth & development , Biodiversity , Denaturing Gradient Gel Electrophoresis , Denitrification/drug effects , Ethanol/metabolism , Fatty Acids, Volatile/metabolism , Lactates/metabolism , Molecular Sequence Data , Oxidation-Reduction/drug effects , Phylogeny , RNA, Ribosomal, 16S/genetics , Sulfates/isolation & purification , Sulfides/pharmacology , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...