Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
JCO Precis Oncol ; 8: e2300454, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38591867

ABSTRACT

PURPOSE: The National Cancer Institute Molecular Analysis for Therapy Choice trial is a signal-finding genomically driven platform trial that assigns patients with any advanced refractory solid tumor, lymphoma, or myeloma to targeted therapies on the basis of next-generation sequencing results. Subprotocol E evaluated osimertinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, in patients with EGFR mutations. METHODS: Eligible patients had EGFR mutations (T790M or rare activating) and received osimertinib 80 mg once daily. Patients with lung cancer with EGFR T790M were excluded. The primary end point was objective response rate (ORR), and the secondary end points were 6-month progression-free survival (PFS), overall survival, and toxicity. RESULTS: A total of 19 patients were enrolled: 17 were evaluable for toxicity and 13 for efficacy. The median age of the 13 included in the efficacy analysis was 63 years, 62% had Eastern Cooperative Oncology Group performance status 1, and 31% received >three previous systemic therapies. The most common tumor type was brain cancers (54%). The ORR was 15.4% (n = 2 of 13; 90% CI, 2.8 to 41.0) and 6-month PFS was 16.7% (90% CI, 0 to 34.4). The two confirmed RECIST responses were observed in a patient with neuroendocrine carcinoma not otherwise specified (EGFR exon 20 S768T and exon 18 G719C mutation) and a patient with low-grade epithelial carcinoma of the paranasal sinus (EGFR D770_N771insSVD). The most common (>20%) treatment-related adverse events were diarrhea, thrombocytopenia, and maculopapular rash. CONCLUSION: In this pretreated cohort, osimertinib did not meet the prespecified end point threshold for efficacy, but responses were seen in a neuroendocrine carcinoma with an EGFR exon 20 S768T and exon 18 G719C mutation and an epithelial carcinoma with an EGFR D770_N771insSVD mutation. Osimertinib was well tolerated and had a safety profile consistent with previous studies.


Subject(s)
Acrylamides , Aniline Compounds , Antineoplastic Agents , Carcinoma, Neuroendocrine , Carcinoma, Non-Small-Cell Lung , Indoles , Lung Neoplasms , Pyrimidines , United States , Humans , Middle Aged , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/genetics , ErbB Receptors/genetics , National Cancer Institute (U.S.) , Antineoplastic Agents/adverse effects , Protein Kinase Inhibitors/adverse effects , Mutation , Carcinoma, Neuroendocrine/drug therapy
2.
Plant J ; 118(3): 879-891, 2024 May.
Article in English | MEDLINE | ID: mdl-38271219

ABSTRACT

As sessile organisms, plants experience variable environments and encounter diverse stresses during their growth and development. Adventitious rooting, orchestrated by multiple coordinated signaling pathways, represents an adaptive strategy evolved by plants to adapt to cope with changing environmental conditions. This study uncovered the role of the miR159a-PeMYB33 module in the formation of adventitious roots (ARs) synergistically with abscisic acid (ABA) signaling in poplar. Overexpression of miR159a increased the number of ARs and plant height while reducing sensitivity to ABA in transgenic plants. In contrast, inhibition of miR159a (using Short Tandem Target Mimic) or overexpression of PeMYB33 decreased the number of ARs in transgenic plants. Additionally, miR159a targets and cleaves transcripts of PeMYB33 using degradome analysis, which was further confirmed by a transient expression experiment of poplar protoplast. We show the miR159a-PeMYB33 module controls ARs development in poplar through ABA signaling. In particular, we demonstrated that miR159a promotes the expression of genes in the ABA signaling pathway. The findings from this study shed light on the intricate regulatory mechanisms governing the development of ARs in poplar plants. The miR159a-PeMYB33 module, in conjunction with ABA signaling, plays a crucial role in modulating AR formation and subsequent plant growth.


Subject(s)
Abscisic Acid , Gene Expression Regulation, Plant , MicroRNAs , Plant Proteins , Plant Roots , Plants, Genetically Modified , Populus , Signal Transduction , Abscisic Acid/metabolism , Populus/genetics , Populus/growth & development , Populus/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
3.
J Am Chem Soc ; 145(37): 20578-20587, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37674257

ABSTRACT

Transition metal nitrides have received considerable attention owing to their crucial roles in nitrogen fixation and nitrogen atom transfer reactions. Compared to the early and middle transition metals, it is much more challenging to access late transition metal nitrides, especially cobalt in group 9. So far, only a handful of cobalt nitrides have been reported; consequently, their hydrogenation reactivity is largely unexplored. Herein, we present a structurally and spectroscopically well-characterized thiolate-bridged dicobalt µ-nitride [Cp*CoIII(µ-SAd)(µ-N)CoIIICp*] (2) featuring a bent {CoIII(µ-N)CoIII} core. Remarkably, complex 2 can realize not only direct hydrogenation of nitride to amide but also stepwise N-H bond formation from nitride to ammonia. Specifically, 2 can facilely activate dihydrogen (H2) at mild conditions to generate a dicobalt µ-amide [Cp*CoII(µ-SAd)(µ-NH2)CoIICp*] (4) via an unusual mechanism of two-electron oxidation of H2 as proposed by computational studies; in the presence of protons (H+) and electrons, nitride 2 can convert to dicobalt µ-imide [Cp*CoIII(µ-SAd)(µ-NH)CoIIICp*][BPh4] (3[BPh4]) and to CoIICoII µ-amide 4, and finally release ammonia. In contrast to 2, the only other structurally characterized dicobalt µ-nitride Na(THF)4{[(ketguan)CoIII(N3)]2(µ-N)} (ketguan = [(tBu2CN)C(NDipp)2]-, Dipp = 2,6-diisopropylphenyl) (e) that possesses a linear {CoIII(µ-N)CoIII} moiety cannot directly react with H2 or H+. Further in-depth electronic structure analyses shed light on how the varying geometries of the {CoIII(µ-N)CoIII} moieties in 2 and e, bent vs linear, impart their disparate reactivities.

4.
iScience ; 26(4): 106496, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37096046

ABSTRACT

Poplar coma, commonly referred to as "seed hairs", is a tuft of trichomes attached to the seed coat that helps seed dispersal. However, they can also trigger health impacts for humans, including sneezing, shortness of breath, and skin irritation. Despite efforts to study the regulatory mechanism of herbaceous trichome formation, poplar coma remains poorly understood. In this study, we showed that the epidermal cells of the funiculus and placenta are the origin of poplar coma based on observations of paraffin sections. Small RNA (sRNA) and degradome libraries were also constructed at three stages of poplar coma development, including initiation and elongation stages. Based on 7,904 miRNA-target pairs identified by small RNA and degradome sequencing, we constructed a miRNA-transcript factor and a stage-specific miRNA regulatory network. By combining paraffin section observation and deep sequencing, our research will provide greater insight into the molecular mechanisms of poplar coma development.

5.
Chem Commun (Camb) ; 58(72): 10032-10035, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-35983880

ABSTRACT

Novel broad wavelength-shifted thermoresponsive sensors were fabricated by introducing ferrocene groups into polymeric photonic crystals. They are more suitable thermosensors due to their advantages, such as simple preparation, broad wavelength shifts (up to 162 nm), visible color change, and strong anti-interference ability.


Subject(s)
Photons , Polymers , Polymers/chemistry
6.
Org Lett ; 24(29): 5281-5286, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35849760

ABSTRACT

A Ru(II)-catalyzed decarbonylative alkylation and annulation of salicylaldehydes and 2-aminobenzaldehydes with iodonium ylides has been developed for the synthesis of dibenzo[b,d]furans and NH-free carbazolones. The reaction proceeds smoothly under mild conditions with a low catalyst loading and a broad substrate compatibility. Notably, hydroxy and free amino groups were demonstrated to be the effective directing groups, enabling the successful aldehyde C-H bond activation and subsequent decarbonylation and annulation under the inexpensive Ru(II) catalyst.


Subject(s)
Benzaldehydes , Chelating Agents , Alkylation , Benzaldehydes/chemistry , Catalysis , Molecular Structure
7.
J Alzheimers Dis ; 87(3): 957-968, 2022.
Article in English | MEDLINE | ID: mdl-35431253

ABSTRACT

BACKGROUND: Epidemiologic evidence suggests that physical activity benefits cognition, but results from randomized trials in sedentary individuals are limited and inconsistent. OBJECTIVE: To evaluate the effects of physical activity on cognition among sedentary older adults. OBJECTIVE: A systematic literature search for eligible studies published up to January 1, 2021, was performed on six international (PubMed, Cochrane Library, Web of Science, Sinomed, FMRS, and OVID) and three Chinese databases (Wanfang, China National Knowledge Infrastructure, and VIP). We estimated the effect of physical activity on the cognition of sedentary elderly by standardized mean differences (SMD) and 95% confidence intervals (CI) using a random-effects model. We evaluated publication bias using funnel plots and heterogeneity using I2 statistics. Subgroup analyses were conducted by baseline cognition, intervention duration, activity type, and country. RESULTS: Seven randomized controlled trials (RCTs) comprising 321 (experimental group, 164; control group, 157) sedentary older adults were included in the meta-analysis. Physical activity significantly improved cognition in sedentary elderly adults compared with controls (SMD: 0.50, 95% CI:0.09-0.92). Subgroup analyses showed significant effects of baseline cognition impairment (SMD: 9.80, 95% CI: 5.81-13.80), intervention duration > 12 weeks (SMD: 2.85, 95% CI: 0.73-4.96), aerobic exercise (SMD: 0.74, CI: 0.19-1.29), and countries other than the United States (SMD: 10.50, 95% CI: 7.08-13.92). CONCLUSION: Physical activity might have a general positive effect on the cognition of sedentary older adults. Intervention > 12 weeks and aerobic exercise can effectively delay their cognitive decline; however, more rigorous RCTs are needed to support our findings.


Subject(s)
Cognitive Dysfunction , Exercise , Aged , China , Cognition , Humans , Randomized Controlled Trials as Topic
8.
ACS Omega ; 4(21): 19420-19436, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31763566

ABSTRACT

An efficient Ni(ClO4)2·6H2O-promoted amidoalkylation reaction for the synthesis of 3-substituted isoindolinones involving various γ-hydroxy lactams and nucleophiles has been successfully developed. The transformation proceeds with both carbon (ketones and arenes) and heteroatom (alcohols, thiols, and amines) nucleophiles and in both intermolecular and intramolecular manners. The prominent features of the present strategy are wide substrate scope, excellent group tolerability, and moderate to good yields (up to 96% yield). The present strategy is also characterized by remarkable superiority over the current synthetic methods. Furthermore, the reaction could be scaled up to the multigram scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...