Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Sci Immunol ; 9(94): eadi1023, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608038

ABSTRACT

The development of dendritic cells (DCs), including antigen-presenting conventional DCs (cDCs) and cytokine-producing plasmacytoid DCs (pDCs), is controlled by the growth factor Flt3 ligand (Flt3L) and its receptor Flt3. We genetically dissected Flt3L-driven DC differentiation using CRISPR-Cas9-based screening. Genome-wide screening identified multiple regulators of DC differentiation including subunits of TSC and GATOR1 complexes, which restricted progenitor growth but enabled DC differentiation by inhibiting mTOR signaling. An orthogonal screen identified the transcriptional repressor Trim33 (TIF-1γ) as a regulator of DC differentiation. Conditional targeting in vivo revealed an essential role of Trim33 in the development of all DCs, but not of monocytes or granulocytes. In particular, deletion of Trim33 caused rapid loss of DC progenitors, pDCs, and the cross-presenting cDC1 subset. Trim33-deficient Flt3+ progenitors up-regulated pro-inflammatory and macrophage-specific genes but failed to induce the DC differentiation program. Collectively, these data elucidate mechanisms that control Flt3L-driven differentiation of the entire DC lineage and identify Trim33 as its essential regulator.


Subject(s)
Chorea , Cell Differentiation , Cytokines , Dendritic Cells
2.
J Immunol ; 211(10): 1475-1480, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37800687

ABSTRACT

Autoantibodies to chromatin and dsDNA are a hallmark of systemic lupus erythematosus (SLE). In a mouse model of monogenic human SLE caused by DNASE1L3 deficiency, the anti-DNA response is dependent on endosomal nucleic acid-sensing TLRs TLR7 and TLR9. In this study, we report that this response also required TLR2, a surface receptor for microbial products that is primarily expressed on myeloid cells. Cell transfers into lymphopenic DNASE1L3-deficient mice showed that TLR2 was required for anti-DNA Ab production by lymphocytes. TLR2 was detectably expressed on B cells and facilitated the production of IL-6 by B cells activated in the presence of microbial products. Accordingly, treatment with broad-spectrum antibiotics or Ab-mediated blockade of IL-6 delayed the anti-DNA response in DNASE1L3-deficient mice. These studies reveal an unexpected B cell-intrinsic role of TLR2 in systemic autoreactivity to DNA, and they suggest that microbial products may synergize with self-DNA in the activation of autoreactive B cells in SLE.


Subject(s)
Lupus Erythematosus, Systemic , Toll-Like Receptor 2 , Mice , Animals , Humans , Interleukin-6 , B-Lymphocytes , Autoantibodies , Antibodies, Antinuclear , DNA
3.
J Exp Med ; 220(6)2023 06 05.
Article in English | MEDLINE | ID: mdl-36928522

ABSTRACT

Extracellular DNase DNASE1L3 maintains tolerance to self-DNA in humans and mice, whereas the role of its homolog DNASE1 remains controversial, and the overall function of secreted DNases in immunity is unclear. We report that deletion of murine DNASE1 neither caused autoreactivity in isolation nor exacerbated lupus-like disease in DNASE1L3-deficient mice. However, combined deficiency of DNASE1 and DNASE1L3 rendered mice susceptible to bloodstream infection with Staphylococcus aureus. DNASE1/DNASE1L3 double-deficient mice mounted a normal innate response to S. aureus and did not accumulate neutrophil extracellular traps (NETs). However, their kidneys manifested severe pathology, increased bacterial burden, and biofilm-like bacterial lesions that contained bacterial DNA and excluded neutrophils. Furthermore, systemic administration of recombinant DNASE1 protein during S. aureus infection rescued the mortality of DNase-deficient mice and ameliorated the disease in wild-type mice. Thus, DNASE1 and DNASE1L3 jointly facilitate the control of bacterial infection by digesting extracellular microbial DNA in biofilms, suggesting the original evolutionary function of secreted DNases as antimicrobial agents.


Subject(s)
Biofilms , Endodeoxyribonucleases , Sepsis , Staphylococcal Infections , Animals , Mice , Deoxyribonuclease I/genetics , Deoxyribonuclease I/metabolism , Deoxyribonucleases/metabolism , DNA/metabolism , Endodeoxyribonucleases/metabolism , Extracellular Traps/metabolism , Mammals/genetics , Mammals/metabolism , Staphylococcal Infections/prevention & control , Staphylococcus aureus/metabolism
5.
6.
J Exp Med ; 218(5)2021 05 03.
Article in English | MEDLINE | ID: mdl-33783474

ABSTRACT

Antibodies to double-stranded DNA (dsDNA) are prevalent in systemic lupus erythematosus (SLE), particularly in patients with lupus nephritis, yet the nature and regulation of antigenic cell-free DNA (cfDNA) are poorly understood. Null mutations in the secreted DNase DNASE1L3 cause human monogenic SLE with anti-dsDNA autoreactivity. We report that >50% of sporadic SLE patients with nephritis manifested reduced DNASE1L3 activity in circulation, which was associated with neutralizing autoantibodies to DNASE1L3. These patients had normal total plasma cfDNA levels but showed accumulation of cfDNA in circulating microparticles. Microparticle-associated cfDNA contained a higher fraction of longer polynucleosomal cfDNA fragments, which bound autoantibodies with higher affinity than mononucleosomal fragments. Autoantibodies to DNASE1L3-sensitive antigens on microparticles were prevalent in SLE nephritis patients and correlated with the accumulation of cfDNA in microparticles and with disease severity. DNASE1L3-sensitive antigens included DNA-associated proteins such as HMGB1. Our results reveal autoantibody-mediated impairment of DNASE1L3 activity as a common nongenetic mechanism facilitating anti-dsDNA autoreactivity in patients with severe sporadic SLE.


Subject(s)
Antibodies, Antinuclear/immunology , Autoantibodies/immunology , DNA/immunology , Endodeoxyribonucleases/immunology , Lupus Erythematosus, Systemic/immunology , Lupus Nephritis/immunology , Adult , Animals , Antibodies, Antinuclear/blood , Autoantibodies/blood , Cell-Derived Microparticles/immunology , Cell-Derived Microparticles/metabolism , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/immunology , Child , Endodeoxyribonucleases/blood , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Female , HEK293 Cells , HMGB1 Protein/immunology , HMGB1 Protein/metabolism , Humans , Lupus Erythematosus, Systemic/metabolism , Lupus Nephritis/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Severity of Illness Index
7.
Front Immunol ; 12: 629922, 2021.
Article in English | MEDLINE | ID: mdl-33717156

ABSTRACT

Detection of microbial nucleic acids by the innate immune system is mediated by numerous intracellular nucleic acids sensors. Upon the detection of nucleic acids these sensors induce the production of inflammatory cytokines, and thus play a crucial role in the activation of anti-microbial immunity. In addition to microbial genetic material, nucleic acid sensors can also recognize self-nucleic acids exposed extracellularly during turn-over of cells, inefficient efferocytosis, or intracellularly upon mislocalization. Safeguard mechanisms have evolved to dispose of such self-nucleic acids to impede the development of autoinflammatory and autoimmune responses. These safeguard mechanisms involve nucleases that are either specific to DNA (DNases) or RNA (RNases) as well as nucleic acid editing enzymes, whose biochemical properties, expression profiles, functions and mechanisms of action will be detailed in this review. Fully elucidating the role of these enzymes in degrading and/or processing of self-nucleic acids to thwart their immunostimulatory potential is of utmost importance to develop novel therapeutic strategies for patients affected by inflammatory and autoimmune diseases.


Subject(s)
Autoimmunity/immunology , Autoimmunity/physiology , Immunity, Innate/immunology , Immunity, Innate/physiology , Nucleic Acids/immunology , Animals , Autoimmune Diseases , Deoxyribonucleases/immunology , Humans , Ribonucleases/immunology
8.
Front Immunol ; 11: 1632, 2020.
Article in English | MEDLINE | ID: mdl-32849556

ABSTRACT

IL-10 producing B cells (B10 cells) play an important immunoregulatory role in various autoimmune and infection conditions. However, the factors that regulate their development and maintenance are incompletely understood. Recently, we and others have established a requirement for TLR7 in promoting autoimmune antibody forming cell (AFC) and germinal center (GC) responses. Here we report an important additional role of TLR7 in the negative regulation of B10 cell development. TLR7 overexpression or overstimulation promoted the reduction of B10 cells whereas TLR7 deficiency rescued these cells in both non-autoimmune and autoimmune-prone mice. TLR7 expression was further inversely correlated with B cell-dependent IL-10 production and its inhibition of CD4 T cell proliferation and IFNγ production in an in vitro B cell and T cell co-culture system. Further, B10 cells displayed elevated TLR7, IFNγR, and STAT1 expression compared to non-B10 cells. Interestingly, deficiency of IFNγR in TLR7 overexpressing lupus-prone mice rescued B10 cells from TLR7-mediated reduction. Finally, B cell intrinsic deletion of IFNγR was sufficient to restore B10 cells in the spleens of TLR7-promoted autoimmune mouse model. In conclusion, our findings demonstrate a novel role for the IFNγR-STAT1 pathway in TLR7-mediated negative regulation of B10 cell development.


Subject(s)
B-Lymphocyte Subsets/metabolism , Interferon-gamma/metabolism , Interleukin-10/biosynthesis , Signal Transduction , Toll-Like Receptor 7/metabolism , Animals , Autoimmune Diseases/etiology , Autoimmune Diseases/metabolism , Autoimmunity , B-Lymphocyte Subsets/immunology , Biomarkers , Disease Models, Animal , Immunomodulation/genetics , Immunophenotyping , Interferon-gamma/genetics , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Lymphocyte Count , Mice , Mice, Transgenic , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
9.
Immunity ; 52(6): 1022-1038.e7, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32454024

ABSTRACT

Class-switched antibodies to double-stranded DNA (dsDNA) are prevalent and pathogenic in systemic lupus erythematosus (SLE), yet mechanisms of their development remain poorly understood. Humans and mice lacking secreted DNase DNASE1L3 develop rapid anti-dsDNA antibody responses and SLE-like disease. We report that anti-DNA responses in Dnase1l3-/- mice require CD40L-mediated T cell help, but proceed independently of germinal center formation via short-lived antibody-forming cells (AFCs) localized to extrafollicular regions. Type I interferon (IFN-I) signaling and IFN-I-producing plasmacytoid dendritic cells (pDCs) facilitate the differentiation of DNA-reactive AFCs in vivo and in vitro and are required for downstream manifestations of autoimmunity. Moreover, the endosomal DNA sensor TLR9 promotes anti-dsDNA responses and SLE-like disease in Dnase1l3-/- mice redundantly with another nucleic acid-sensing receptor, TLR7. These results establish extrafollicular B cell differentiation into short-lived AFCs as a key mechanism of anti-DNA autoreactivity and reveal a major contribution of pDCs, endosomal Toll-like receptors (TLRs), and IFN-I to this pathway.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Communication , DNA/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Interferon Type I/metabolism , Animals , Antibodies, Antinuclear/immunology , Autoantigens/immunology , Autoimmunity , Biomarkers , CD40 Ligand/deficiency , Cell Communication/genetics , Cell Communication/immunology , Disease Models, Animal , Disease Susceptibility , Endodeoxyribonucleases/deficiency , Fluorescent Antibody Technique , Germinal Center/immunology , Germinal Center/metabolism , Germinal Center/pathology , Lupus Erythematosus, Systemic/etiology , Lupus Erythematosus, Systemic/metabolism , Mice , Mice, Knockout , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 9/metabolism
10.
Sci Immunol ; 5(46)2020 04 10.
Article in English | MEDLINE | ID: mdl-32276965

ABSTRACT

Intestinal mononuclear phagocytes (MPs) are composed of heterogeneous dendritic cell (DC) and macrophage subsets necessary for the initiation of immune response and control of inflammation. Although MPs in the normal intestine have been extensively studied, the heterogeneity and function of inflammatory MPs remain poorly defined. We performed phenotypical, transcriptional, and functional analyses of inflammatory MPs in infectious Salmonella colitis and identified CX3CR1+ MPs as the most prevalent inflammatory cell type. CX3CR1+ MPs were further divided into three distinct populations, namely, Nos2 +CX3CR1lo, Ccr7 +CX3CR1int (lymph migratory), and Cxcl13 +CX3CR1hi (mucosa resident), all of which were transcriptionally aligned with macrophages and derived from monocytes. In follow-up experiments in vivo, intestinal CX3CR1+ macrophages were superior to conventional DC1 (cDC1) and cDC2 in inducing Salmonella-specific mucosal IgA. We next examined spatial organization of the immune response induced by CX3CR1+ macrophage subsets and identified mucosa-resident Cxcl13 +CX3CR1hi macrophages as the antigen-presenting cells responsible for recruitment and activation of CD4+ T and B cells to the sites of Salmonella invasion, followed by tertiary lymphoid structure formation and the local pathogen-specific IgA response. Using mice we developed with a floxed Ccr7 allele, we showed that this local IgA response developed independently of migration of the Ccr7 +CX3CR1int population to the mesenteric lymph nodes and contributed to the total mucosal IgA response to infection. The differential activity of intestinal macrophage subsets in promoting mucosal IgA responses should be considered in the development of vaccines to prevent Salmonella infection and in the design of anti-inflammatory therapies aimed at modulating macrophage function in inflammatory bowel disease.


Subject(s)
CX3C Chemokine Receptor 1/immunology , Immunoglobulin A/immunology , Intestinal Mucosa/immunology , Macrophages/immunology , Tertiary Lymphoid Structures/immunology , Animals , Female , Gastrointestinal Microbiome/immunology , Inflammation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Salmonella enterica/immunology , Streptomycin
11.
Front Immunol ; 10: 1601, 2019.
Article in English | MEDLINE | ID: mdl-31354738

ABSTRACT

Self-reactive B cells generated through V(D)J recombination in the bone marrow or through accrual of random mutations in secondary lymphoid tissues are mostly purged or edited to prevent autoimmunity. Yet, 10-20% of all mature naïve B cells in healthy individuals have self-reactive B cell receptors (BCRs). In patients with serologically active systemic lupus erythematosus (SLE) the percentage increases up to 50%, with significant self-DNA reactivity that correlates with disease severity. Endogenous or self-DNA has emerged as a potent antigen in several autoimmune disorders, particularly in SLE. However, the mechanism(s) regulating or preventing anti-DNA antibody production remain elusive. It is likely that in healthy subjects, DNA-reactive B cells avoid activation due to the unavailability of endogenous DNA, which is efficiently degraded through efferocytosis and various DNA-processing proteins. Genetic defects, physiological, and/or pathological conditions can override these protective checkpoints, leading to autoimmunity. Plausibly, increased availability of immunogenic self-DNA may be the key initiating event in the loss of tolerance of otherwise quiescent DNA-reactive B cells. Indeed, mutations impairing apoptotic cell clearance pathways and nucleic acid metabolism-associated genes like DNases, RNases, and their sensors are known to cause autoimmune disorders including SLE. Here we review the literature supporting the idea that increased availability of DNA as an immunogen or adjuvant, or both, may cause the production of pathogenic anti-DNA antibodies and subsequent manifestations of clinical disease such as SLE. We discuss the main cellular players involved in anti-DNA responses; the physical forms and sources of immunogenic DNA in autoimmunity; the DNA-protein complexes that render DNA immunogenic; the regulation of DNA availability by intracellular and extracellular DNases and the autoimmune pathologies associated with their dysfunction; the cytosolic and endosomal sensors of immunogenic DNA; and the cytokines such as interferons that drive auto-inflammatory and autoimmune pathways leading to clinical disease. We propose that prevention of DNA availability by aiding extracellular DNase activity could be a viable therapeutic modality in controlling SLE.


Subject(s)
Autoantibodies/immunology , Autoantigens/immunology , B-Lymphocytes/immunology , DNA/immunology , Lupus Erythematosus, Systemic/etiology , Animals , Antibodies, Antinuclear/immunology , Apoptosis , Autoimmunity , B-Lymphocytes/metabolism , Biomarkers , Dendritic Cells/immunology , Dendritic Cells/metabolism , Disease Susceptibility , Extracellular Traps/immunology , Humans , Immunity, Innate , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/metabolism , Lysosomes/immunology , Lysosomes/metabolism , Mutation , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/pathology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Toll-Like Receptors/metabolism
12.
Autoimmunity ; 52(2): 57-68, 2019 03.
Article in English | MEDLINE | ID: mdl-31006265

ABSTRACT

Systemic lupus erythematosus (SLE) is a debilitating multi-factorial immunological disorder characterized by increased inflammation and development of anti-nuclear autoantibodies. Selenium (Se) is an essential trace element with beneficial anti-cancer and anti-inflammatory immunological functions. In our previous proteomics study, analysis of Se-responsive markers in the circulation of Se-supplemented healthy men showed a significant increase in complement proteins. Additionally, Se supplementation prolonged the life span of lupus prone NZB/NZW-F1 mice. To better understand the protective immunological role of Se in SLE pathogenesis, we have investigated the impact of Se on B cells and macrophages using in vitro Se supplementation assays and the B6.Sle1b mouse model of lupus with an oral Se or placebo supplementation regimen. Analysis of Se-treated B6.Sle1b mice showed reduced splenomegaly and splenic cellularity compared to untreated B6. Sle1b mice. A significant reduction in total B cells and notably germinal center (GC) B cell numbers was observed. However, other cell types including T cells, Tregs, DCs and pDCs were unaffected. Consistent with reduced GC B cells there was a significant reduction in autoantibodies to dsDNA and SmRNP of the IgG2b and IgG2c subclass upon Se supplementation. We found that increased Se availability leads to impaired differentiation and maturation of macrophages from mouse bone marrow derived progenitors in vitro. Additionally, Se treatment during in vitro activation of B cells with anti-CD40L and LPS inhibited optimal B cell activation. Overall our data indicate that Se supplementation inhibits activation, differentiation and maturation of B cells and macrophages. Its specific inhibitory effect on B cell activation and GC B cell differentiation could be explored as a potential therapeutic supplement for SLE patients.


Subject(s)
Antibodies, Antinuclear/immunology , B-Lymphocytes , Immunoglobulin G/immunology , Lupus Erythematosus, Systemic , Macrophages , Selenium/pharmacology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Disease Models, Animal , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Macrophages/immunology , Macrophages/pathology , Mice
13.
Proc Natl Acad Sci U S A ; 116(2): 641-649, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30593563

ABSTRACT

Circulating DNA in plasma consists of short DNA fragments. The biological processes generating such fragments are not well understood. DNASE1L3 is a secreted DNASE1-like nuclease capable of digesting DNA in chromatin, and its absence causes anti-DNA responses and autoimmunity in humans and mice. We found that the deletion of Dnase1l3 in mice resulted in aberrations in the fragmentation of plasma DNA. Such aberrations included an increase in short DNA molecules below 120 bp, which was positively correlated with anti-DNA antibody levels. We also observed an increase in long, multinucleosomal DNA molecules and decreased frequencies of the most common end motifs found in plasma DNA. These aberrations were independent of anti-DNA response, suggesting that they represented a primary effect of DNASE1L3 loss. Pregnant Dnase1l3-/- mice carrying Dnase1l3+/- fetuses showed a partial restoration of normal frequencies of plasma DNA end motifs, suggesting that DNASE1L3 from Dnase1l3-proficient fetuses could enter maternal systemic circulation and affect both fetal and maternal DNA fragmentation in a systemic as well as local manner. However, the observed shortening of circulating fetal DNA relative to maternal DNA was not affected by the deletion of Dnase1l3 Collectively, our findings demonstrate that DNASE1L3 plays a role in circulating plasma DNA homeostasis by enhancing fragmentation and influencing end-motif frequencies. These results support a distinct role of DNASE1L3 as a regulator of the physical form and availability of cell-free DNA and may have important implications for the mechanism whereby this enzyme prevents autoimmunity.


Subject(s)
Cell-Free Nucleic Acids/blood , DNA Fragmentation , DNA/blood , Endodeoxyribonucleases/metabolism , Nucleotide Motifs , Animals , Cell-Free Nucleic Acids/genetics , DNA/genetics , Endodeoxyribonucleases/genetics , Female , Fetus/metabolism , Gene Deletion , Mice , Mice, Knockout , Pregnancy
14.
Curr Opin Immunol ; 55: 31-37, 2018 12.
Article in English | MEDLINE | ID: mdl-30261321

ABSTRACT

High-affinity antibodies to double-stranded DNA are a hallmark of systemic lupus erythematosus (SLE) and are thought to contribute to disease flares and tissue inflammation such as nephritis. Notwithstanding their clinical importance, major questions remain about the development and regulation of these pathogenic anti-DNA responses. These include the mechanisms that prevent anti-DNA responses in healthy subjects, despite the constant generation of self-DNA and the abundance of DNA-reactive B cells; the nature and physical form of antigenic DNA in SLE; the regulation of DNA availability as an antigen; and potential therapeutic strategies targeting the pathogenic DNA in SLE. This review summarizes current progress in these directions, focusing on the role of secreted DNases in the regulation of antigenic extracellular DNA.


Subject(s)
Autoantigens/immunology , DNA/immunology , Deoxyribonucleases/immunology , Lupus Erythematosus, Systemic/immunology , Autoantigens/metabolism , DNA/metabolism , Deoxyribonucleases/metabolism , Humans , Lupus Erythematosus, Systemic/metabolism
15.
Cell Rep ; 24(2): 406-418, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29996101

ABSTRACT

Type 1 interferon (T1IFN) signaling promotes inflammation and lupus pathology, but its role in autoreactive B cell development in the antibody-forming cell (AFC) and germinal center (GC) pathways is unclear. Using a lupus model that allows for focused study of the AFC and GC responses, we show that T1IFN signaling is crucial for autoreactive B cell development in the AFC and GC pathways. Through bone marrow chimeras, DNA-reactive B cell transfer, and GC-specific Cre mice, we confirm that IFNαR signaling in B cells promotes autoreactive B cell development into both pathways. Transcriptomic analysis reveals gene expression alterations in multiple signaling pathways in non-GC and GC B cells in the absence of IFNαR. Finally, we find that T1IFN signaling promotes autoreactive B cell development in the AFC and GC pathways by regulating BCR signaling. These data suggest value for anti-IFNαR therapy in individuals with elevated T1IFN activity before clinical disease onset.


Subject(s)
B-Lymphocytes/immunology , Immune Tolerance , Interferon Type I/metabolism , Signal Transduction , Animals , Antibodies, Antinuclear/metabolism , Antibody Affinity , Antibody Formation , Antigens/metabolism , Autoantibodies/biosynthesis , DNA/metabolism , Female , Germinal Center/metabolism , Immunization , Mice, Inbred C57BL , Receptor, Interferon alpha-beta/metabolism , Transcriptome/genetics
16.
Immunol Cell Biol ; 96(3): 298-315, 2018 03.
Article in English | MEDLINE | ID: mdl-29345385

ABSTRACT

Mer Tyrosine Kinase receptor (Mer) is involved in anti-inflammatory efferocytosis. Here we report elevated spontaneous germinal center (Spt-GC) responses in Mer-deficient mice (Mer-/- ) that are associated with the loss of SIGN-R1+ marginal zone macrophages (MZMs). The dissipation of MZMs in Mer-/- mice occurs independently of reduced cellularity or delocalization of marginal zone B cells, sinusoidal cells or of CD169+ metallophillic macrophages. We find that MZM dissipation in Mer-/- mice contributes to apoptotic cell (AC) accumulation in Spt-GCs and dysregulation of the GC checkpoint, allowing an expansion of DNA-reactive B cells in GCs. We further observe that bone marrow derived macrophages from Mer-/- mice produce more TNFα, and are susceptible to cell death upon exposure to ACs compared to WT macrophages. Anti-TNFα Ab treatment of Mer-/- mice is, however, unable to reverse MZM loss, but results in reduced Spt-GC responses, indicating that TNFα promotes Spt-GC responses in Mer-/- mice. Contrary to an anti-TNFα Ab treatment, treatment of Mer-/- mice with a synthetic agonist for the transcription factor LXRα rescues a significant number of MZMs in vivo. Our data suggest that Mer-LXRα signaling plays an important role in the differentiation and maintenance of MZMs, which in turn regulate Spt-GC responses and tolerance.


Subject(s)
Cell Adhesion Molecules/metabolism , Germinal Center/metabolism , Lectins, C-Type/metabolism , Macrophages/metabolism , Receptors, Cell Surface/metabolism , c-Mer Tyrosine Kinase/metabolism , Animals , Antigen Presentation/drug effects , Apoptosis/drug effects , B-Lymphocytes/metabolism , Benzoates/pharmacology , Benzylamines/pharmacology , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Liver X Receptors/metabolism , Lymphocyte Activation/drug effects , Macrophages/drug effects , Mice, Knockout , T-Lymphocytes/drug effects , Tumor Necrosis Factor-alpha/metabolism , c-Mer Tyrosine Kinase/deficiency
17.
J Immunol ; 199(12): 4001-4015, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29118245

ABSTRACT

Mer tyrosine kinase (Mer) signaling maintains immune tolerance by clearing apoptotic cells (ACs) and inducing immunoregulatory signals. We previously showed that Mer-deficient mice (Mer-/-) have increased germinal center (GC) responses, T cell activation, and AC accumulation within GCs. Accumulated ACs in GCs can undergo necrosis and release self-ligands, which may influence the outcome of a GC response and selection. In this study, we generated Mer-/- mice with a global MyD88, TLR7, or TLR9 deficiency and cell type-specific MyD88 deficiency to study the functional correlation between Mer and TLRs in the development of GC responses and autoimmunity. We found that GC B cell-intrinsic sensing of self-RNA, but not self-DNA, released from dead cells accumulated in GCs drives enhanced GC responses in Mer-/- mice. Although self-ligands directly affect GC B cell responses, the loss of Mer in dendritic cells promotes enhanced T cell activation and proinflammatory cytokine production. To study the impact of Mer deficiency on the development of autoimmunity, we generated autoimmune-prone B6.Sle1b mice deficient in Mer (Sle1bMer-/-). We observed accelerated autoimmunity development even under conditions where Sle1bMer-/- mice did not exhibit increased AC accumulation in GCs compared with B6.Sle1b mice, indicating that Mer immunoregulatory signaling in APCs regulates B cell selection and autoimmunity. We further found significant expansion, retention, and class-switching of autoreactive B cells in GCs under conditions where ACs accumulated in GCs of Sle1bMer-/- mice. Altogether, both the phagocytic and immunomodulatory functions of Mer regulate GC responses to prevent the development of autoimmunity.


Subject(s)
Autoimmunity/immunology , Germinal Center/immunology , Self Tolerance/physiology , c-Mer Tyrosine Kinase/physiology , Animals , Antigen Presentation , Apoptosis , B-Lymphocyte Subsets/immunology , Female , Immunization , Immunoglobulin Class Switching , Kidney/pathology , Male , Membrane Glycoproteins/deficiency , Mice , Mice, Knockout , Myeloid Differentiation Factor 88/immunology , RNA/immunology , Specific Pathogen-Free Organisms , Toll-Like Receptor 7/deficiency , Toll-Like Receptor 9/deficiency , c-Mer Tyrosine Kinase/deficiency , c-Mer Tyrosine Kinase/genetics
18.
PLoS Pathog ; 13(6): e1006435, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28614386

ABSTRACT

The goal of the innate immune system is to reduce pathogen spread prior to the initiation of an effective adaptive immune response. Following an infection at a peripheral site, virus typically drains through the lymph to the lymph node prior to entering the blood stream and being systemically disseminated. Therefore, there are three distinct spatial checkpoints at which intervention to prevent systemic spread of virus can occur, namely: 1) the site of infection, 2) the draining lymph node via filtration of lymph or 3) the systemic level via organs that filter the blood. We have previously shown that systemic depletion of phagocytic cells allows viral spread after dermal infection with Vaccinia virus (VACV), which infects naturally through the skin. Here we use multiple depletion methodologies to define both the spatial checkpoint and the identity of the cells that prevent systemic spread of VACV. Subcapsular sinus macrophages of the draining lymph node have been implicated as critical effectors in clearance of lymph borne viruses following peripheral infection. We find that monocyte populations recruited to the site of VACV infection play a critical role in control of local pathogenesis and tissue damage, but do not prevent dissemination of virus. Following infection with virulent VACV, the subcapsular sinus macrophages within the draining lymph node become infected, but are not exclusively required to prevent systemic spread. Rather, small doses of VACV enter the bloodstream and the function of systemic macrophages, but not dendritic cells, is required to prevent further spread. The results illustrate that a systemic innate response to a peripheral virus infection may be required to prevent widespread infection and pathology following infection with virulent viruses, such as poxviruses.


Subject(s)
Immunity, Innate/immunology , Macrophages/immunology , Vaccinia virus/immunology , Vaccinia/immunology , Animals , Disease Models, Animal , Flow Cytometry , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence
19.
J Exp Med ; 213(5): 715-32, 2016 05 02.
Article in English | MEDLINE | ID: mdl-27069112

ABSTRACT

Spontaneously developed germinal centers (GCs [Spt-GCs]) harbor autoreactive B cells that generate somatically mutated and class-switched pathogenic autoantibodies (auto-Abs) to promote autoimmunity. However, the mechanisms that regulate Spt-GC development are not clear. In this study, we report that B cell-intrinsic IFN-γ receptor (IFN-γR) and STAT1 signaling are required for Spt-GC and follicular T helper cell (Tfh cell) development. We further demonstrate that IFN-γR and STAT1 signaling control Spt-GC and Tfh cell formation by driving T-bet expression and IFN-γ production by B cells. Global or B cell-specific IFN-γR deficiency in autoimmune B6.Sle1b mice leads to significantly reduced Spt-GC and Tfh cell responses, resulting in diminished antinuclear Ab reactivity and IgG2c and IgG2b auto-Ab titers compared with B6.Sle1b mice. Additionally, we observed that the proliferation and differentiation of DNA-reactive B cells into a GC B cell phenotype require B cell-intrinsic IFN-γR signaling, suggesting that IFN-γR signaling regulates GC B cell tolerance to nuclear self-antigens. The IFN-γR deficiency, however, does not affect GC, Tfh cell, or Ab responses against T cell-dependent foreign antigens, indicating that IFN-γR signaling regulates autoimmune, but not the foreign antigen-driven, GC and Tfh cell responses. Together, our data define a novel B cell-intrinsic IFN-γR signaling pathway specific to Spt-GC development and autoimmunity. This novel pathway can be targeted for future pharmacological intervention to treat systemic lupus erythematosus.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , Lupus Erythematosus, Systemic/immunology , Receptors, Interferon/immunology , STAT1 Transcription Factor/immunology , Signal Transduction/immunology , Animals , Autoantibodies/immunology , B-Lymphocytes/pathology , Germinal Center/pathology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/pathology , Mice , Mice, Knockout , Receptors, Interferon/genetics , STAT1 Transcription Factor/genetics , Signal Transduction/genetics , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/pathology , Interferon gamma Receptor
20.
J Autoimmun ; 63: 31-46, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26162758

ABSTRACT

The inhibitory IgG Fc receptor (FcγRIIB) deficiency and 129 strain-derived signaling lymphocyte activation molecules (129-SLAMs) are proposed to contribute to the lupus phenotype in FcγRIIB-deficient mice generated using 129 ES cells and backcrossed to C57BL/6 mice (B6.129.RIIBKO). In this study, we examine the individual contributions and the cellular mechanisms by which FcγRIIB deficiency and 129-derived SLAM family genes promote dysregulated spontaneous germinal center (Spt-GC) B cell and follicular helper T cell (Tfh) responses in B6.129.RIIBKO mice. We find that B6 mice congenic for the 129-derived SLAM locus (B6.129-SLAM) and B6 mice deficient in FcγRIIB (B6.RIIBKO) have increased Spt-GC B cell responses compared to B6 controls but significantly lower than B6.129.RIIBKO mice. These data indicate that both FcγRIIB deficiency and 129-SLAMs contribute to elevated Spt-GC B cell responses in B6.129.RIIBKO mice. However, only 129-SLAMs contribute significantly to augmented Tfh responses in B6.129.RIIBKO mice, and do so by a combination of T cell-dependent effects and enhanced B cell and DC-dependent antigen presentation to T cells. Elevated Spt-GC B cell responses in mice with FcγRIIB deficiency and polymorphic 129-SLAMs were associated with elevated metabolic activity, improved GC B cell survival and increased differentiation of naïve B cells into GC B cell phenotype. Our data suggest that the interplay between 129-SLAM expression on B cells, T cells and DCs is central to the alteration of the GC tolerance checkpoint, and that deficiency of FcγRIIB on B cells is necessary to augment Spt-GC responses, pathogenic autoantibodies, and lupus disease.


Subject(s)
Antigens, CD/metabolism , Autoimmunity , Germinal Center , Receptors, Cell Surface/metabolism , Receptors, IgG/deficiency , Animals , Autoimmunity/physiology , B-Lymphocytes/immunology , Germinal Center/immunology , Germinal Center/metabolism , Immune Tolerance , Mice , Mice, 129 Strain , Receptors, IgG/genetics , Signaling Lymphocytic Activation Molecule Family Member 1 , T-Lymphocytes, Helper-Inducer/immunology
SELECTION OF CITATIONS
SEARCH DETAIL