Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Radiosurg SBRT ; 8(2): 85-94, 2022.
Article in English | MEDLINE | ID: mdl-36275132

ABSTRACT

Objectives: Patients undergoing stereotactic radiosurgery (SRS) for brain metastases require additional radiation for relapse. Our objective is to determine the factors associated with salvage SRS versus whole brain radiation therapy (WBRT) for salvage of first intracranial failure (ICF) after upfront SRS. Method: We identified a cohort of 110 patients with brain metastases treated with SRS in the definitive or postoperative setting followed by subsequent salvage WBRT or SRS at least one month after initial SRS. Clinical and demographic characteristics were retrospectively recorded. Results: 78 Patients received SRS and 32 patients received WBRT at the time of first ICF. On multivariate analysis (MVA) factors associated with decreased use of salvage SRS were male gender (p=0.044) and local progression (p<0.001). Conclusions: Local progression and male gender were the strongest factors associated with selection of salvage WBRT. Possible etiologies of this difference could be provider or patient driven, but warrant further exploration.

2.
World Neurosurg ; 167: e738-e746, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36028107

ABSTRACT

OBJECTIVES: The optimal frequency of surveillance brain magnetic resonance imaging (MRI) in long-term survivors with brain metastases after stereotactic radiosurgery (SRS) is unknown. Our aim was to identify the optimal frequency of surveillance imaging in long-term survivors with brain metastases after SRS. METHODS: Eligible patients were identified from a cohort treated with SRS definitively or postoperatively at our institution from 2014 to 2019 with no central nervous system (CNS) failure within 12 months from SRS. Time to CNS disease failure diagnosis and cost per patient were estimated using theoretical MRI schedules of 2, 3, 4, and 6 months starting 1 year after SRS until CNS failure. Time to diagnosis was calculated from the date of CNS progression to the theoretical imaging date on each schedule. RESULTS: This cohort included 55 patients (median follow-up from SRS: 2.48 years). During the study period, 20.0% had CNS disease failure (median: 2.26 years from SRS treatment). In this cohort, a theoretical 2-month, 3-month, 4-month, and 6-month MRI brain surveillance schedule produced a respective estimated time to diagnosis of CNS disease failure of 1.11, 1.74, 1.65, and 3.65 months. The cost of expedited diagnosis for the cohort (dollars/month) for each theoretical imaging schedule compared with a 6-month surveillance schedule was $6600 for a 2-month protocol, $4496 for a 3-month protocol, and $2180 for a 4-month protocol. CONCLUSIONS: Based on cost-benefit, a 4-month MRI brain schedule should be considered in patients with metastatic disease to the brain treated definitively or postoperatively with SRS without evidence of CNS recurrence at 1 year.


Subject(s)
Brain Neoplasms , Radiosurgery , Humans , Radiosurgery/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Brain Neoplasms/pathology , Brain/pathology , Magnetic Resonance Imaging , Survivors , Retrospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL