Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2400870, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553790

ABSTRACT

Thermoelectric materials are highly promising for waste heat harvesting. Although thermoelectric materials research has expanded over the years, bismuth telluride-based alloys are still the best for near-room-temperature applications. In this work, a ≈38% enhancement of the average ZT (300-473 K) to 1.21 is achieved by mixing Bi0.4Sb1.6Te3 with an emerging thermoelectric material Sb2Si2Te6, which is significantly higher than that of most BiySb2-yTe3-based composites. This enhancement is facilitated by the unique interface region between the Bi0.4Sb1.6Te3 matrix and Sb2Si2Te6-based precipitates with an orderly atomic arrangement, which promotes the transport of charge carriers with minimal scattering, overcoming a common factor that is limiting ZT enhancement in such composites. At the same time, high-density dislocations in the same region can effectively scatter the phonons, decoupling the electron-phonon transport. This results in a ≈56% enhancement of the thermoelectric quality factor at 373 K, from 0.41 for the pristine sample to 0.64 for the composite sample. A single-leg device is fabricated with a high efficiency of 5.4% at ΔT = 164 K further demonstrating the efficacy of the Sb2Si2Te6 compositing strategy and the importance of the precipitate-matrix interface microstructure in improving the performance of materials for relatively low-temperature applications.

2.
Adv Healthc Mater ; 12(19): e2300024, 2023 07.
Article in English | MEDLINE | ID: mdl-36964966

ABSTRACT

Lignin is a nontoxic and biocompatible biopolymer with many promising characteristics, including a high tensile strength and antioxidant properties. This natural polymer can be processed through several chemical methods and modified into lignin nanomaterials for potential biomedical applications. This review summarizes the latest developments in nanolignin (NL)-based biomaterials for cancer therapy; various NL applications related to cancer therapy are considered, including drug and gene delivery, biosensing, bioimaging, and tissue engineering. The manuscript also outlines the potential use of these materials to improve the therapeutic potency of chemotherapeutic drugs by decreasing their dose and reducing their adverse effects. Due to its high surface area-to-volume ratio and the easy modification of its chemical components, NL could serve as an appropriate matrix for the binding and controlled release of various pharmaceutical agents. Moreover, the challenges in the utilization of NL-based materials for cancer therapy are discussed, along with the prospects of advances in such nanomaterials for medical research applications.


Subject(s)
Nanostructures , Neoplasms , Humans , Biocompatible Materials/therapeutic use , Biocompatible Materials/chemistry , Lignin/therapeutic use , Lignin/chemistry , Nanostructures/therapeutic use , Nanostructures/chemistry , Pharmaceutical Preparations , Neoplasms/drug therapy
3.
Polymers (Basel) ; 11(11)2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31717323

ABSTRACT

Organic materials have gained considerable attention for electrochromic (EC) applications owing to improved EC performance and good processability. As a class of well-recognized organic EC materials, viologens have received persistent attention due to the structural versatility and property tunability, and are major active EC components for most of the marketed EC devices. Over the past two decades, extensive efforts have been made to design and synthesize different types of viologen-based materials with enhanced EC properties. This review summarizes chemical structures, preparation and EC properties of various latest viologen-based electrochromes, including small viologen derivatives, main-chain viologen-based polymers, conjugated polymers with viologen side-chains and viologen-based organic/inorganic composites. The performance enhancement mechanisms are concisely discussed. The current marketed viologens-based electrochromic devices (ECDs) are briefly introduced and an outlook on the challenges and future exploration directions for viologen-based materials and their ECDs are also proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...