Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
1.
Nat Commun ; 14(1): 2784, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37188674

ABSTRACT

DNA methylation variations are prevalent in human obesity but evidence of a causative role in disease pathogenesis is limited. Here, we combine epigenome-wide association and integrative genomics to investigate the impact of adipocyte DNA methylation variations in human obesity. We discover extensive DNA methylation changes that are robustly associated with obesity (N = 190 samples, 691 loci in subcutaneous and 173 loci in visceral adipocytes, P < 1 × 10-7). We connect obesity-associated methylation variations to transcriptomic changes at >500 target genes, and identify putative methylation-transcription factor interactions. Through Mendelian Randomisation, we infer causal effects of methylation on obesity and obesity-induced metabolic disturbances at 59 independent loci. Targeted methylation sequencing, CRISPR-activation and gene silencing in adipocytes, further identifies regional methylation variations, underlying regulatory elements and novel cellular metabolic effects. Our results indicate DNA methylation is an important determinant of human obesity and its metabolic complications, and reveal mechanisms through which altered methylation may impact adipocyte functions.


Subject(s)
DNA Methylation , Diabetes Mellitus , Humans , Adipocytes/metabolism , Obesity/metabolism , Diabetes Mellitus/metabolism , Genomics , Epigenesis, Genetic
2.
Nat Genet ; 55(4): 581-594, 2023 04.
Article in English | MEDLINE | ID: mdl-36914835

ABSTRACT

Gastric cancer is among the most common malignancies worldwide, characterized by geographical, epidemiological and histological heterogeneity. Here, we report an extensive, multiancestral landscape of driver events in gastric cancer, involving 1,335 cases. Seventy-seven significantly mutated genes (SMGs) were identified, including ARHGAP5 and TRIM49C. We also identified subtype-specific drivers, including PIGR and SOX9, which were enriched in the diffuse subtype of the disease. SMGs also varied according to Epstein-Barr virus infection status and ancestry. Non-protein-truncating CDH1 mutations, which are characterized by in-frame splicing alterations, targeted localized extracellular domains and uniquely occurred in sporadic diffuse-type cases. In patients with gastric cancer with East Asian ancestry, our data suggested a link between alcohol consumption or metabolism and the development of RHOA mutations. Moreover, mutations with potential roles in immune evasion were identified. Overall, these data provide comprehensive insights into the molecular landscape of gastric cancer across various subtypes and ancestries.


Subject(s)
Epstein-Barr Virus Infections , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , Transcriptome , Herpesvirus 4, Human/genetics , Genomics
3.
World J Clin Oncol ; 13(8): 712-724, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36160461

ABSTRACT

BACKGROUND: There are concerns that tamoxifen is less effective in Asian women because of the high prevalence of impaired function cytochrome P450 2D6 (CYP2D6) polymor-phisms. AIM: To evaluate how knowledge of CYP2D6 genotype impacted the choice of hormonal agent and how CYP2D6 genotype and agent were associated with clinical outcomes. METHODS: Eighty-two women were recruited. Seventy-eight completed CYP2D6 genotyping and were categorized into poor, intermediate (IM) and extensive or ultra metabolizer phenotypes. Women with poor metabolizer and IM phenotypes were recommended aromatase inhibitors as the preferred agent. RESULTS: More than 70% of the women had an IM phenotype, 32% an extensive or ultra metabolizer phenotype, and 0% had a poor metabolizer phenotype. Regardless of genotype, more women opted for aromatase inhibitors. Overall, 80% of women completed 5 years of hormonal therapy. Five women developed recurrence, 3 contralateral breast cancer, 5 died, and 1 was diagnosed with a second primary cancer. Five-year recurrence-free and overall survival were slightly better in women with the extensive or ultra metabolizer phenotype compared to those with the IM phenotype, though not statistically significant [P = 0.743, hazard ratio (HR): 1.441, 95% confidence interval (CI): 0.191 to 10.17 and P = 0.798, HR: 1.327, 95%CI: 0.172 to 9.915, respectively]. Women receiving aromatase inhibitors also appeared to have a better, but also nonsignificant, 5-year recurrence-free and overall survival (P = 0.253, HR: 0.368, 95%CI: 0.031 to 0.258 and P = 0.292, HR: 0.252, 95%CI: 0.005 to 4.951, respectively). CONCLUSION: The IM phenotype was highly prevalent but was not associated with clinical outcome.

4.
Gut ; 71(5): 854-863, 2022 05.
Article in English | MEDLINE | ID: mdl-33975867

ABSTRACT

OBJECTIVE: To investigate the incidence of gastric cancer (GC) attributed to gastric intestinal metaplasia (IM), and validate the Operative Link on Gastric Intestinal Metaplasia (OLGIM) for targeted endoscopic surveillance in regions with low-intermediate incidence of GC. METHODS: A prospective, longitudinal and multicentre study was carried out in Singapore. The study participants comprised 2980 patients undergoing screening gastroscopy with standardised gastric mucosal sampling, from January 2004 and December 2010, with scheduled surveillance endoscopies at year 3 and 5. Participants were also matched against the National Registry of Diseases Office for missed diagnoses of early gastric neoplasia (EGN). RESULTS: There were 21 participants diagnosed with EGN. IM was a significant risk factor for EGN (adjusted-HR 5.36; 95% CI 1.51 to 19.0; p<0.01). The age-adjusted EGN incidence rates for patients with and without IM were 133.9 and 12.5 per 100 000 person-years. Participants with OLGIM stages III-IV were at greatest risk (adjusted-HR 20.7; 95% CI 5.04 to 85.6; p<0.01). More than half of the EGNs (n=4/7) attributed to baseline OLGIM III-IV developed within 2 years (range: 12.7-44.8 months). Serum trefoil factor 3 distinguishes (Area Under the Receiver Operating Characteristics 0.749) patients with OLGIM III-IV if they are negative for H. pylori. Participants with OLGIM II were also at significant risk of EGN (adjusted-HR 7.34; 95% CI 1.60 to 33.7; p=0.02). A significant smoking history further increases the risk of EGN among patients with OLGIM stages II-IV. CONCLUSIONS: We suggest a risk-stratified approach and recommend that high-risk patients (OLGIM III-IV) have endoscopic surveillance in 2 years, intermediate-risk patients (OLGIM II) in 5 years.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Precancerous Conditions , Stomach Neoplasms , Gastroscopy , Helicobacter Infections/complications , Helicobacter Infections/epidemiology , Humans , Metaplasia , Precancerous Conditions/epidemiology , Prospective Studies , Risk Factors , Stomach Neoplasms/diagnosis , Stomach Neoplasms/epidemiology , Stomach Neoplasms/etiology
5.
Front Oncol ; 11: 736265, 2021.
Article in English | MEDLINE | ID: mdl-34631570

ABSTRACT

PURPOSE: Precision oncology, such as next generation sequencing (NGS) molecular analysis and bioinformatics are used to guide targeted therapies. The laboratory turnaround time (TAT) is a key performance indicator of laboratory performance. This study aims to formally apply statistical process control (SPC) methods such as CUSUM and EWMA to a precision medicine programme to analyze the learning curves of NGS and bioinformatics processes. PATIENTS AND METHODS: Trends in NGS and bioinformatics TAT were analyzed using simple regression models with TAT as the dependent variable and chronologically-ordered case number as the independent variable. The M-estimator "robust" regression and negative binomial regression were chosen to serve as sensitivity analyses to each other. Next, two popular statistical process control (SPC) approaches which are CUSUM and EWMA were utilized and the CUSUM log-likelihood ratio (LLR) charts were also generated. All statistical analyses were done in Stata version 16.0 (StataCorp), and nominal P < 0.05 was considered to be statistically significant. RESULTS: A total of 365 patients underwent successful molecular profiling. Both the robust linear model and negative binomial model showed statistically significant reductions in TAT with accumulating experience. The EWMA and CUSUM charts of overall TAT largely corresponded except that the EWMA chart consistently decreased while the CUSUM analyses indicated improvement only after a nadir at the 82nd case. CUSUM analysis found that the bioinformatics team took a lower number of cases (54 cases) to overcome the learning curve compared to the NGS team (85 cases). CONCLUSION: As NGS and bioinformatics lead precision oncology into the forefront of cancer management, characterizing the TAT of NGS and bioinformatics processes improves the timeliness of data output by potentially spotlighting problems early for rectification, thereby improving care delivery.

6.
Oncotarget ; 12(7): 674-685, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33868588

ABSTRACT

The native hepatocellular cancer (HCC) microenvironment is characterized by more hypoxic, hypoglycemic, and acidic conditions than those used in standard cell culture. This study aimed to investigate whether HCC cells cultured in more native conditions have an altered phenotype and drug sensitivity compared to those cultured in standard conditions. Six HCC cell lines were cultured in "standard" (21% O2, 25 mM glucose) or more "native" (1% O2, 5 mM glucose, 10 mM lactate) conditions. Cells were assessed for growth rates, cell cycle distribution, relevant metabolite and protein levels, genome-wide gene expression, mitochondrial DNA sequence and sensitivity to relevant drugs. Many differences in cellular and molecular phenotypes and drug sensitivity were observed between the cells. HCC cells cultured in native conditions had slower doubling times, increased HK2 and GLUT, lower PHDA and ATP levels, and mutations in mitochondrial DNA. Thirty-one genes, including the hypoxia-associated NDRG1, were differentially expressed between the cells. HCC patients in The Cancer Genome Atlas (TCGA) with tumors with a high score based on these 31 genes had a poorer prognosis than those with a low score (p = 0.002). From 90 comparisons of drug sensitivity, increased resistance and sensitivity for cells cultured in native conditions was observed in 14 (16%) and 8 (9%) comparisons respectively. In conclusion, cells cultured in more native conditions can have a more glycolytic and aggressive phenotype and varied drug sensitivity to those cultured in standard conditions, and may provide new insights to understanding tumor biology and drug development.

7.
Gastric Cancer ; 24(3): 611-623, 2021 May.
Article in English | MEDLINE | ID: mdl-33611641

ABSTRACT

BACKGROUND: Immunotherapy targeting PD-1 provides a limited survival benefit in patients with unresectable advanced or recurrent gastric cancer (GC). Beside PD-L1, the expression of inhibitory ligands such as CEACAM-1 and LSECtin on GC cells account for this limitation. Here we assessed their expression and immune suppressive effect in GC patients. METHODS: Using multiplexed immunohistochemistry staining, we evaluated the distribution of different inhibitory ligands, including PD-L1, CEACAM-1, LSECtin, and MHC class II, in 365 GC patients. We analyzed their correlations and overall survival (OS) based on the expression of each inhibitory ligand and the independent prognostic factors that affect OS. Subsequently, we evaluated the additive effect of anti-PD-1 mAb or anti-PD-L1 mAb with/without anti-Lag-3 mAb with/without anti-Tim-3 mAb in cytotoxic assay using tumor-antigen specific CTL clones against GC cell lines. RESULTS: Co-expression of the inhibitory ligands for PD-1, Tim-3, and Lag-3 was observed in the largest proportion (34.7%). CEACAM-1, LSECtin, and MHC class II expression showed significant correlation with PD-L1 expression and OS. Multivariable analysis demonstrated that CEACAM-1 low is an independent prognostic factor. Furthermore, combining dual and triple ICIs yielded additive effect on cytotoxicity of CTL clones against each immune inhibitory ligand positive GC cell lines. CONCLUSIONS: Our findings suggested that the expression of inhibitory ligands for Tim-3 and Lag-3 on GC cells serve as potential biomarkers to predict the response to anti-PD-1 therapy and the combinatorial immunotherapy with ICIs targeting for PD-1, Tim-3, and Lag-3 has a therapeutic potential for GC patients.


Subject(s)
Programmed Cell Death 1 Receptor/metabolism , Stomach Neoplasms/therapy , Aged , Antigens, CD/metabolism , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Immunotherapy , Lectins, C-Type/metabolism , Male , Singapore , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/mortality , Survival Analysis
8.
Hum Mol Genet ; 30(7): 603-618, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33547791

ABSTRACT

DNA methylation (DNAm) is an epigenetic modification that acts to regulate gene transcription, is essential for cellular processes and plays an important role in complex traits and disease. Variation in DNAm levels is influenced by both genetic and environmental factors. Several studies have examined the extent to which common genetic variation influences DNAm (i.e. mQTLs), however, an improved understanding of mQTLs across diverse human populations is needed to increase their utility in integrative genomic studies in order to further our understanding of complex trait and disease biology. Here, we systematically examine cis-mQTLs in three Southeast Asian populations in the Singapore Integrative Omics (iOmics) Study, comprised of Chinese (n = 93), Indians (n = 83) and Malays (n = 78). A total of 24 851 cis-mQTL probes were associated with at least one SNP in meta- and ethnicity-specific analyses at a stringent significance level. These cis-mQTL probes show significant differences in local SNP heritability between the ethnicities, enrichment in functionally relevant regions using data from the Roadmap Epigenomics Mapping Consortium and are associated with nearby genes and complex traits due to pleiotropy. Importantly, DNAm prediction performance and the replication of cis-mQTLs both within iOmics and between two independent mQTL studies in European and Bangladeshi individuals is best when the genetic distance between the ethnicities is small, with differences in cis-mQTLs likely due to differences in allele frequency and linkage disequilibrium. This study highlights the importance of, and opportunities from, extending investigation of the genetic control of DNAm to Southeast Asian populations.


Subject(s)
DNA Methylation , Epigenomics/methods , Genetics, Population/methods , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Adult , Asian People/genetics , China/ethnology , Gene Expression Regulation , Gene Frequency , Genetic Predisposition to Disease/ethnology , Genetic Predisposition to Disease/genetics , Genotype , Humans , India/ethnology , Linkage Disequilibrium , Malaysia/ethnology , Middle Aged , Singapore
9.
PLoS One ; 15(11): e0242058, 2020.
Article in English | MEDLINE | ID: mdl-33211709

ABSTRACT

The tumor immune microenvironment is emerging as a critical player in predicting cancer prognosis and response to therapies. However, the prognostic value of tumor-infiltrating immune cells in Gingivo-Buccal Oral Squamous Cell Carcinoma (GBOSCC) and their association with tumor size or lymph node metastases status require further elucidation. To study the relationship of tumor-infiltrating immune cells with tumor size (T stage) and lymph node metastases (N stages), we analyzed the density of tumor-infiltrating immune cells in archived, whole tumor resections from 94 patients. We characterized these sections by immune-histochemistry using 12 markers and enumerated tumor-infiltrating immune cells at the invasive margins (IM) and centers of tumors (CT). We observed that a higher density of CD3+ cells in the IM and CT was associated with smaller tumor size (T1-T2 stage). Fewer CD3+ cells was associated with larger tumor size (T3-T4 stage). High infiltration of CD3+and CD8+ cells in IM and CT as well as high CD4+ cell infiltrates in the IM was significantly associated with the absence of lymph node metastases. High infiltrates of CD3+ and CD8+ cells in CT was associated with significantly improved survival. Our results illustrate that the densities and spatial distribution of CD3+ and CD8+ cell infiltrates in primary GBOSCC tumors is predictive of disease progression and survival. Based on our findings, we recommend incorporating immune cell quantification in the TNM classification and routine histopathology reporting of GBOSCC. Immune cell quantification in CT and IM may help predict the efficacy of future therapies.


Subject(s)
CD3 Complex/metabolism , CD8 Antigens/metabolism , Carcinoma, Squamous Cell/surgery , Lymphocytes, Tumor-Infiltrating/immunology , Mouth Neoplasms/surgery , Adult , Aged , Aged, 80 and over , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Disease Progression , Female , Humans , Lymph Node Excision , Lymphatic Metastasis , Male , Margins of Excision , Middle Aged , Mouth Neoplasms/immunology , Mouth Neoplasms/pathology , Neoplasm Staging , Prognosis , Survival Analysis , Tumor Microenvironment
10.
Cancers (Basel) ; 12(6)2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32560395

ABSTRACT

We investigate the feasibility of obtaining multiple spatially-separated biopsies from a single lesion to explore intratumor heterogeneity and identify actionable truncal mutations using whole exome sequencing (WES). A single-pass radiologically-guided percutaneous technique was used to obtain four spatially-separated biopsies from a single metastatic lesion. WES was performed to identify putative truncal variants (PTVs), defined as a non-synonymous somatic (NSS) variant present in all four spatially separated biopsies. Actionable truncal mutations-filtered using the FoundationOne panel-were defined as clinically relevant PTVs. Mutational landscapes of each biopsy and their association with patient outcomes were assessed. WES on 50 biopsied samples from 13 patients across six cancer types were analyzed. Actionable truncal mutations were identified in 9/13 patients; 31.1 ± 5.12 more unique NSS variants were detected with every additional multi- region tumor biopsy (MRTB) analyzed. The number of PTVs dropped by 16.1 ± 17.9 with every additional MRTB, with the decrease most pronounced (36.8 ± 19.7) when two MRTB were analyzed compared to one. MRTB most reliably predicted PTV compared to in silico analysis of allele frequencies and cancer cell fraction based on one biopsy sample. Three patients treated with actionable truncal mutation-directed therapy derived clinical benefit. Multi-regional sampling for genomics analysis is feasible and informative to help prioritize precision-therapy strategies.

11.
J Cancer ; 10(21): 5130-5138, 2019.
Article in English | MEDLINE | ID: mdl-31602266

ABSTRACT

Purpose: A comprehensive molecular analysis was conducted to identify prognostic and predictive markers for adjuvant S-1 chemotherapy in stage II/III Japanese gastric cancer (GC) patients and to evaluate their potential suitability for alternative cytotoxic or targeted drugs. Experimental Design: We investigated genetic polymorphisms of enzymes potentially involved in 5-fluoruracil (5-FU) metabolism as well as platinum resistance, previously identified genomic subtypes potentially predicting 5-FU benefit, and mRNA expression levels of receptor tyrosine kinases and KRAS as potential treatment targets in a single institution cohort of 252 stage II/III GC patients treated with or without S-1 after D2 gastrectomy. Results: 88% and 62% GC had a potentially 5-FU sensitive phenotype by SNP analyses of TS 3'UTR, and TS 5'UTR, respectively. 24%, 46%, 40%, 5%, and 44% GC had a potentially platinum sensitive phenotype by SNP analyses of GSTP1, ERCC1 rs11615, ERCC1 rs3212986, ERCC2, and XRCC1, respectively. High HER2, EGFR, FGFR2, or MET mRNA expression was observed in 49%, 66%, 72%, and 54% GC, respectively. High HER2 expression was the only significant prognosticator (HR=3.912, 95%CI: 1.706-8.973, p=0.0005). High HER2 (p=0.031), low EGFR (p=0.124), high MET (p=0.165) RNA expression, and TS 5'UTR subtype 2R/2R, 2R/3C, or 3C (p=0.058) were significant independent predictors for S-1 resistance. Conclusions: The present study suggests that platinum-based or RTK targeted agents could be alternative treatment options for a substantial subgroup of Japanese GC patients currently treated with S-1. HER2, EGFR, MET, and TS 5'UTR SNP appear to be promising predictive markers for S-1 resistance warranting validation in an independent GC series.

12.
Clin Colorectal Cancer ; 18(4): e324-e334, 2019 12.
Article in English | MEDLINE | ID: mdl-31350202

ABSTRACT

BACKGROUND: Although at least 5 genes are implicated in Lynch Syndrome (LS), up to 50% of suspected cases are owing to undefined genes. We utilized next generation sequencing (NGS) to characterize the mutation profile of patients with cancer (CA) suspected to have LS. PATIENTS AND METHODS: We enrolled 174 Asian patients with CA from our CA Genetics Clinic from 2000 to 2014 suspected to have LS, and obtained germline DNA for NGS using TruSight Cancer. Frameshift, nonsense, and known deleterious mutations were considered pathogenic. Polymorphisms ≤ 1% frequency in 1000 Genomes (Asian) were classified using established databases. RESULTS: Of the 174 probands, 80.5% were Chinese, the median age at CA diagnosis was 45 years (range, 18-82 years), and 84.5% and 8.6% had colon and LS-like CA, respectively. Forty-seven of 100 evaluable colon CA probands had LS-like histopathologic features. Nineteen of 174 had family history fulfilling Amsterdam I/II Criteria, whereas the rest fulfilled Bethesda Guidelines. Thirty-one of 174 harbored pathogenic mutations with 10 in LS genes only, 20 in non-LS genes only, and 1 in both. Of the 11 with LS gene mutations, MLH1 was most commonly involved (n = 7), followed by MSH2, MSH6, and PMS2. Nine of 174 had pathogenic mutations diagnostic of alternative hereditary syndromes including 2 each in CDH1, APC, and BRCA1, and 1 each in BRCA2, SMAD4, and MUTYH. Ten unique mutations were detected in low-to-moderate penetrance genes: 6 individuals had a recurring novel KIT:c.2836C>T nonsense mutation (n = 3) or ERCC4:c.2169C>A nonsense mutation (n = 3) without LS gene mutation, which is of clinical interest. CONCLUSIONS: In this Asian study, NGS proved to be feasible in screening for causative mutations in patients with CA suspected to have LS.


Subject(s)
Asian People/genetics , Biomarkers, Tumor/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Mismatch Repair , DNA Repair Enzymes/genetics , High-Throughput Nucleotide Sequencing/methods , Mutation , Adolescent , Adult , Aged , Aged, 80 and over , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , Female , Follow-Up Studies , Genetic Predisposition to Disease , Genetic Testing , Humans , Male , Middle Aged , Prognosis , Young Adult
13.
Respirology ; 24(3): 215-226, 2019 03.
Article in English | MEDLINE | ID: mdl-30636374

ABSTRACT

The development of molecular testing for identifying somatic mutations and immune checkpoint biomarkers has directed treatment towards personalized medicine for patients with non-small cell lung cancer. The choice of molecular testing in a clinical setting is influenced by cost, expertise in the technology, instrumentation setup and sample type availability. The molecular techniques described in this review include immunohistochemistry (IHC), fluorescent in situ hybridization, direct sequencing, real-time polymerase chain reaction (PCR), denaturing high-performance liquid chromatography, matrix-assisted laser desorption/ionization time of flight mass spectrometry and next-generation sequencing (NGS). IHC is routinely used in clinical practice for the classification, differentiation, histology and identification of targetable alterations of epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK) and programmed death ligand-1 (PD-L1). Recently, the PD-L1 pathway was identified as being exploited by tumour cells, allowing immune resistance and tumour evasion. The development of immune checkpoint inhibitors as treatment for tumours expressing checkpoints has highlighted the need for standardized IHC assays to inform treatment decisions for patients. Direct sequencing was historically the gold standard for mutation testing for EGFR, KRAS (Kirsten rat sarcoma viral oncogene homologue) and BRAF (v-Raf murine sarcoma viral oncogene homologue B1) requiring a high ratio of tumour to normal cells, but this has been superseded by more sensitive methods. NGS is a new emerging technique, which allows high-throughput coverage of frequently mutated genes, including less common BRAF and MET mutations and alterations in tumour suppressor genes. When an NGS platform is unavailable, PCR-based technologies offer an efficient and cost-effective single gene test to guide patient treatment. This article will review these techniques and discuss the future of molecular platforms underpinning clinical management decisions.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , DNA, Neoplasm/analysis , Lung Neoplasms/genetics , Polymerase Chain Reaction/methods , Anaplastic Lymphoma Kinase/genetics , B7-H1 Antigen/genetics , Biomarkers , Carcinoma, Non-Small-Cell Lung/drug therapy , Chromatography, High Pressure Liquid/methods , ErbB Receptors/genetics , High-Throughput Nucleotide Sequencing , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Lung Neoplasms/drug therapy , Mutation , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Sequence Analysis, DNA , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
14.
BMC Bioinformatics ; 19(1): 299, 2018 08 10.
Article in English | MEDLINE | ID: mdl-30097004

ABSTRACT

BACKGROUND: The knowledge of miRNAs regulating the expression of sets of mRNAs has led to novel insights into numerous and diverse cellular mechanisms. While a single miRNA may regulate many genes, one gene can be regulated by multiple miRNAs, presenting a complex relationship to model for accurate predictions. RESULTS: Here, we introduce miREM, a program that couples an expectation-maximization (EM) algorithm to the common approach of hypergeometric probability (HP), which improves the prediction and prioritization of miRNAs from gene-sets of interest. miREM has been made available through a web-server ( https://bioinfo-csi.nus.edu.sg/mirem2/ ) that can be accessed through an intuitive graphical user interface. The program incorporates a large compendium of human/mouse miRNA-target prediction databases to enhance prediction. Users may upload their genes of interest in various formats as an input and select whether to consider non-conserved miRNAs, amongst filtering options. Results are reported in a rich graphical interface that allows users to: (i) prioritize predicted miRNAs through a scatterplot of HP p-values and EM scores; (ii) visualize the predicted miRNAs and corresponding genes through a heatmap; and (iii) identify and filter homologous or duplicated predictions by clustering them according to their seed sequences. CONCLUSION: We tested miREM using RNAseq datasets from two single "spiked" knock-in miRNA experiments and two double knock-out miRNA experiments. miREM predicted these manipulated miRNAs as having high EM scores from the gene set signatures (i.e. top predictions for single knock-in and double knock-out miRNA experiments). Finally, we have demonstrated that miREM predictions are either similar or better than results provided by existing programs.


Subject(s)
Algorithms , Computational Biology/methods , Databases, Nucleic Acid , MicroRNAs/genetics , Animals , Humans , Mice , RNA, Messenger
15.
BMC Med ; 16(1): 104, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29986700

ABSTRACT

BACKGROUND: Genotype-guided warfarin dosing has been shown in some randomized trials to improve anticoagulation outcomes in individuals of European ancestry, yet its utility in Asian patients remains unresolved. METHODS: An open-label, non-inferiority, 1:1 randomized trial was conducted at three academic hospitals in South East Asia, involving 322 ethnically diverse patients newly indicated for warfarin (NCT00700895). Clinical follow-up was 90 days. The primary efficacy measure was the number of dose titrations within the first 2 weeks of therapy, with a mean non-inferiority margin of 0.5 over the first 14 days of therapy. RESULTS: Among 322 randomized patients, 269 were evaluable for the primary endpoint. Compared with traditional dosing, the genotype-guided group required fewer dose titrations during the first 2 weeks (1.77 vs. 2.93, difference -1.16, 90% CI -1.48 to -0.84, P < 0.001 for both non-inferiority and superiority). The percentage of time within the therapeutic range over 3 months and median time to stable international normalized ratio (INR) did not differ between the genotype-guided and traditional dosing groups. The frequency of dose titrations (incidence rate ratio 0.76, 95% CI 0.67 to 0.86, P = 0.001), but not frequency of INR measurements, was lower at 1, 2, and 3 months in the genotype-guided group. The proportions of patients who experienced minor or major bleeding, recurrent venous thromboembolism, or out-of-range INR did not differ between both arms. For predicting maintenance doses, the pharmacogenetic algorithm achieved an R2 = 42.4% (P < 0.001) and mean percentage error of -7.4%. CONCLUSIONS: Among Asian adults commencing warfarin therapy, a pharmacogenetic algorithm meets criteria for both non-inferiority and superiority in reducing dose titrations compared with a traditional dosing approach, and performs well in prediction of actual maintenance doses. These findings imply that clinicians may consider applying a pharmacogenetic algorithm to personalize initial warfarin dosages in Asian patients. TRIAL REGISTRATION: ClinicalTrials.gov NCT00700895 . Registered on June 19, 2008.


Subject(s)
Anticoagulants/therapeutic use , Maximum Tolerated Dose , Warfarin/therapeutic use , Adult , Aged , Aged, 80 and over , Anticoagulants/administration & dosage , Anticoagulants/pharmacology , Asian People , Female , Genotype , Humans , Male , Middle Aged , Warfarin/administration & dosage , Warfarin/pharmacology , Young Adult
16.
Oncotarget ; 9(37): 24801-24820, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29872507

ABSTRACT

BACKGROUND: Tumor-associated immune cells are prognostic in non-small cell lung cancer (NSCLC) but findings have been conflicting. OBJECTIVES: To determine the prognostic role of immune cells according to localization in NSCLC patients. METHODS: A systematic literature review and meta-analysis was performed on dendritic cell (DC), tumor associated macrophages (TAM), mast cells (MC), natural killer (NK) cells, T and B cells and tumor CTLA-4 and PD-L1 studies. RESULTS: We analysed 96 articles (n= 21,752 patients). Improved outcomes were seen with increased tumor DCs (overall survival (OS) hazard ratio (HR) 0.55; 95% confidence interval (CI) 0.44-0.68), NK cells (OS HR 0.45; 0.31-0.65), TAMs (OS HR 0.33; 0.17-0.62), M1 TAMs (OS HR 0.10; 0.05-0.21), CD3+ T cells (disease specific survival (DSS) HR 0.64; 0.48-0.86), CD8+ T cells (OS HR 0.78; 0.66-0.93), B cells (OS HR 0.65; 0.42-0.99) and with increased stroma DC (DSS HR 0.62; 0.47-0.83), NK cells (DSS HR 0.51; 0.32-0.82), M1 TAMs (OS HR 0.63; 0.42-0.94), CD4+ T cells (OS HR 0.45; 0.21-0.94), CD8+ T cells (OS HR 0.77; 0.69-0.86) and B cells (OS HR 0.74;0.56-0.99). Poor outcomes were seen with stromal M2 TAMs (OS HR 1.44; 1.06-1.96) and Tregs (relapse free survival (RFS) HR 1.80; 1.34-2.43). Tumor PD-L1 was associated with worse OS (1.40; 1.20-1.69), RFS (1.67) and DFS (1.24). CONCLUSION: Tumor and stroma DC, NK cells, M1 TAMs, CD8+ T cells and B cells were associated with improved prognosis and tumor PD-L1, stromal M2 TAMs and Treg cells had poorer prognosis. Higher quality studies are required for confirmation.

17.
Oncotarget ; 9(6): 6841-6851, 2018 Jan 23.
Article in English | MEDLINE | ID: mdl-29467933

ABSTRACT

Programmed death ligand-1 (PD-L1) expression as determined by immunohistochemistry (IHC) is potentially predictive of clinical outcome. The aim of this study was to assess the concordance of reported PD-L1 IHC assays and investigate factors influencing variability. Consecutive sections from 20 non-small cell lung cancers (NSCLCs) comprising resection, core biopsy, cytology and pleural fluid samples underwent IHC with 5 different antibody/autostainer combinations: 22C3/Link48, 28-8/BOND-MAX, E1L3N/BOND-MAX, SP142/BenchMark and SP263/BenchMark. PD-L1 RNA levels were assessed using RNAscope. The frequency of positive cases using scoring thresholds from clinical trials was 72%, 33%, 61%, 56%, and 33% for the 5 IHC protocols respectively, and 33% for RNAscope. Pairwise agreement on the classification of cases as positive or negative for PD-L1 expression ranged from 61%-94%. On a continuous scale, the lowest correlation was between 28-8/BOND-MAX and SP142/BenchMark (R2=0.25) and highest was between 22C3/Link48 and E1L3N/BOND-MAX (R2=0.71). When cases were ordered according to tumor cell (TC)%, a similar ranking of cases across IHC protocols could be observed, albeit with different quanta and limits of detection. Single-slide OPAL 7-color fluorescence IHC analysis revealed a high degree of co-localization of staining from the 5 PD-L1 antibodies. Using SP142 antibody in a BOND-MAX protocol led to increased TC% quanta, while retaining a similar ranking of samples according to TC%. The results of this study highlight tumor PD-L1 status can vary significantly according to IHC protocol. Protocol-dependent staining intensities and nominated thresholds for positivity contribute to this variability, while the antibody used appears to be less of a factor.

18.
Biol Direct ; 13(1): 2, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29433547

ABSTRACT

BACKGROUND: Though earlier works on modelling transcript abundance from vertebrates to lower eukaroytes have specifically singled out the Zip's law, the observed distributions often deviate from a single power-law slope. In hindsight, while power-laws of critical phenomena are derived asymptotically under the conditions of infinite observations, real world observations are finite where the finite-size effects will set in to force a power-law distribution into an exponential decay and consequently, manifests as a curvature (i.e., varying exponent values) in a log-log plot. If transcript abundance is truly power-law distributed, the varying exponent signifies changing mathematical moments (e.g., mean, variance) and creates heteroskedasticity which compromises statistical rigor in analysis. The impact of this deviation from the asymptotic power-law on sequencing count data has never truly been examined and quantified. RESULTS: The anecdotal description of transcript abundance being almost Zipf's law-like distributed can be conceptualized as the imperfect mathematical rendition of the Pareto power-law distribution when subjected to the finite-size effects in the real world; This is regardless of the advancement in sequencing technology since sampling is finite in practice. Our conceptualization agrees well with our empirical analysis of two modern day NGS (Next-generation sequencing) datasets: an in-house generated dilution miRNA study of two gastric cancer cell lines (NUGC3 and AGS) and a publicly available spike-in miRNA data; Firstly, the finite-size effects causes the deviations of sequencing count data from Zipf's law and issues of reproducibility in sequencing experiments. Secondly, it manifests as heteroskedasticity among experimental replicates to bring about statistical woes. Surprisingly, a straightforward power-law correction that restores the distribution distortion to a single exponent value can dramatically reduce data heteroskedasticity to invoke an instant increase in signal-to-noise ratio by 50% and the statistical/detection sensitivity by as high as 30% regardless of the downstream mapping and normalization methods. Most importantly, the power-law correction improves concordance in significant calls among different normalization methods of a data series averagely by 22%. When presented with a higher sequence depth (4 times difference), the improvement in concordance is asymmetrical (32% for the higher sequencing depth instance versus 13% for the lower instance) and demonstrates that the simple power-law correction can increase significant detection with higher sequencing depths. Finally, the correction dramatically enhances the statistical conclusions and eludes the metastasis potential of the NUGC3 cell line against AGS of our dilution analysis. CONCLUSIONS: The finite-size effects due to undersampling generally plagues transcript count data with reproducibility issues but can be minimized through a simple power-law correction of the count distribution. This distribution correction has direct implication on the biological interpretation of the study and the rigor of the scientific findings. REVIEWERS: This article was reviewed by Oliviero Carugo, Thomas Dandekar and Sandor Pongor.


Subject(s)
Models, Theoretical , Animals , Cell Line, Tumor , Humans , MicroRNAs/genetics
19.
Lung Cancer ; 115: 12-20, 2018 01.
Article in English | MEDLINE | ID: mdl-29290252

ABSTRACT

Major advances with the development of epidermal growth factor receptor tyrosine kinase inhibitors and immune check-point inhibitors have ushered in a new era in lung cancer therapy. Whilst pre-clinical studies suggest EGFR-driven NSCLC inhibit antitumor immunity through the activation of the PD-1/PD-L1 pathway, epidemiology studies suggest EGFR mutant NSCLC are more likely to have decreased PD-L1 expression. The superiority of single agent PD-1/PD-L1 inhibitors over docetaxel in pre-treated EGFR mutant NSCLC appears to be moderated. Several mechanisms for a poor response to immune checkpoint have been proposed including a lower tumor mutation burden, and an uninflamed and immunosuppressive tumor microenvironment. Predictive biomarkers to PD-1/PD-L1 inhibitors sensitivity in patients with EGFR mutations are required. The role of EGFR TKI in combination with an immune checkpoint inhibitor is currently being investigated intensively in multiple clinical trials and outcomes from these trials are immature and the optimal sequence, schedule and dosing remains to be determined. A careful evaluation will be required in view of the increased toxicities reported in some of the early studies of combination therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/therapy , Immunotherapy/methods , Lung Neoplasms/therapy , Animals , Antibodies, Monoclonal/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , B7-H1 Antigen/immunology , Biomarkers, Pharmacological/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Clinical Trials as Topic , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Mutation/genetics , Programmed Cell Death 1 Receptor/immunology , Protein Kinase Inhibitors/therapeutic use , Tumor Microenvironment
20.
Int J Cancer ; 142(9): 1890-1900, 2018 05 01.
Article in English | MEDLINE | ID: mdl-28994108

ABSTRACT

The value of precision oncology initiatives in Asian contexts remains unresolved. Here, we review the institutional implementation of prospective molecular screening to facilitate accrual of patients into biomarker-driven clinical trials, and to explore the mutational landscape of advanced tumors occurring in a prospective cohort of Asian patients (n = 396) with diverse cancer types. Next-generation sequencing (NGS) and routine clinicopathological assays, such as immunohistochemistry, copy number analysis and in situ hybridization tests, were performed on tumor samples. Actionable biomarker results were used to identify eligibility for early-phase, biomarker-driven clinical trials. Overall, NGS was successful in 365 of 396 patients (92%), achieving a mean depth of 1,943× and coverage uniformity of 96%. The median turnaround time from sample receipt to return of genomic results was 26.0 days (IQR, 19.0-39.0 days). Reportable mutations were found in 300 of 365 patients (82%). Ninety-one percent of patients at study enrollment indicated consent to receive incidental findings and willingness to undergo genetic counseling if required. The most commonly mutated oncogenes included KRAS (19%), PIK3CA (16%), EGFR (5%), BRAF (3%) and KIT (3%); while the most frequently mutated tumor suppressor genes included TP53 (40%), SMARCB1 (12%), APC (8%), PTEN (6%) and SMAD4 (5%). Among 23 patients enrolled in genotype-matched trials, median progression-free survival was 2.9 months (IQR, 1.5-4.0 months). Nine of 20 evaluable patients (45%; 95% CI, 23.1-68.5%) derived clinical benefit, including 3 partial responses and 6 with stable disease lasting ≥ 8 weeks.


Subject(s)
Asian People/genetics , Biomarkers, Tumor/genetics , Clinical Trials as Topic/methods , Neoplasms/genetics , Neoplasms/therapy , Aged , Biomarkers, Tumor/metabolism , Early Detection of Cancer/methods , Female , Humans , Male , Middle Aged , Neoplasms/metabolism , Precision Medicine/methods , Progression-Free Survival
SELECTION OF CITATIONS
SEARCH DETAIL
...