Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
3.
bioRxiv ; 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37662321

ABSTRACT

Obesity is a worldwide epidemic and places individuals at a higher risk for developing comorbidities that include cardiovascular disease and type 2 diabetes. Adipose tissue contains adipocytes that are responsible for lipid metabolism and reducing misdirected lipid storage. Adipocytes facilitate this process through insulin-mediated uptake of glucose and its subsequent metabolism into triglycerides for storage. During obesity, adipocytes become insulin resistant and have a reduced ability to mediate glucose import, thus resulting in whole-body metabolic dysfunction. Scavenger receptor class B type I (SR-BI) has been implicated in glucose uptake in skeletal muscle and adipocytes via its native ligands, apolipoprotein A-1 and high-density lipoproteins. Further, SR-BI translocation to the cell surface in adipocytes is sensitive to insulin stimulation. Using adipocytes differentiated from ear mesenchymal stem cells isolated from wild-type and SR-BI knockout (SR-BI -/- ) mice as our model system, we tested the hypothesis that SR-BI is required for insulin-mediated glucose uptake and regulation of energy balance in adipocytes. We demonstrated that loss of SR-BI in adipocytes resulted in inefficient glucose uptake regardless of cell surface expression levels of glucose transporter 4 compared to WT adipocytes. We also observed reduced glycolytic capacity, increased lipid biosynthesis, and dysregulated expression of lipid metabolism genes in SR-BI -/- adipocytes compared to WT adipocytes. These results partially support our hypothesis and suggest a novel role for SR-BI in glucose uptake and metabolic homeostasis in adipocytes.

4.
Science ; 381(6661): eadh5207, 2023 09.
Article in English | MEDLINE | ID: mdl-37651538

ABSTRACT

Apolipoprotein B (apoB)-lipoproteins initiate and promote atherosclerotic cardiovascular disease. Plasma tissue plasminogen activator (tPA) activity is negatively associated with atherogenic apoB-lipoprotein cholesterol levels in humans, but the mechanisms are unknown. We found that tPA, partially through the lysine-binding site on its Kringle 2 domain, binds to the N terminus of apoB, blocking the interaction between apoB and microsomal triglyceride transfer protein (MTP) in hepatocytes, thereby reducing very-low-density lipoprotein (VLDL) assembly and plasma apoB-lipoprotein cholesterol levels. Plasminogen activator inhibitor 1 (PAI-1) sequesters tPA away from apoB and increases VLDL assembly. Humans with PAI-1 deficiency have smaller VLDL particles and lower plasma levels of apoB-lipoprotein cholesterol. These results suggest a mechanism that fine-tunes VLDL assembly by intracellular interactions among tPA, PAI-1, and apoB in hepatocytes.


Subject(s)
Apolipoproteins B , Atherosclerosis , Hepatocytes , Lipoproteins, VLDL , Plasminogen Activator Inhibitor 1 , Tissue Plasminogen Activator , Humans , Apolipoproteins B/blood , Atherosclerosis/blood , Atherosclerosis/metabolism , Hepatocytes/metabolism , Lipoproteins, VLDL/metabolism , Plasminogen Activator Inhibitor 1/blood , Plasminogen Activator Inhibitor 1/metabolism , Tissue Plasminogen Activator/metabolism , Animals , Mice , Mice, Inbred C57BL
5.
Signal Transduct Target Ther ; 8(1): 299, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37574469

ABSTRACT

Normal high-density lipoprotein (nHDL) can induce angiogenesis in healthy individuals. However, HDL from patients with coronary artery disease undergoes various modifications, becomes dysfunctional (dHDL), and loses its ability to promote angiogenesis. Here, we identified a long non-coding RNA, HDRACA, that is involved in the regulation of angiogenesis by HDL. In this study, we showed that nHDL downregulates the expression of HDRACA in endothelial cells by activating WW domain-containing E3 ubiquitin protein ligase 2, which catalyzes the ubiquitination and subsequent degradation of its transcription factor, Kruppel-like factor 5, via sphingosine 1-phosphate (S1P) receptor 1. In contrast, dHDL with lower levels of S1P than nHDL were much less effective in decreasing the expression of HDRACA. HDRACA was able to bind to Ras-interacting protein 1 (RAIN) to hinder the interaction between RAIN and vigilin, which led to an increase in the binding between the vigilin protein and proliferating cell nuclear antigen (PCNA) mRNA, resulting in a decrease in the expression of PCNA and inhibition of angiogenesis. The expression of human HDRACA in a hindlimb ischemia mouse model inhibited the recovery of angiogenesis. Taken together, these findings suggest that HDRACA is involved in the HDL regulation of angiogenesis, which nHDL inhibits the expression of HDRACA to induce angiogenesis, and that dHDL is much less effective in inhibiting HDRACA expression, which provides an explanation for the decreased ability of dHDL to stimulate angiogenesis.


Subject(s)
Lipoproteins, HDL , RNA, Long Noncoding , Mice , Animals , Humans , Lipoproteins, HDL/genetics , Lipoproteins, HDL/metabolism , Proliferating Cell Nuclear Antigen , RNA, Long Noncoding/genetics , Endothelial Cells/metabolism , Neovascularization, Physiologic/genetics
8.
Theranostics ; 12(3): 1440-1458, 2022.
Article in English | MEDLINE | ID: mdl-35154499

ABSTRACT

Rationale: Impairment in lymphatic transport is associated with the onset and progression of atherosclerosis in animal models. The downregulation of low-density-lipoprotein receptor (LDLR) expression, rather than increased circulating cholesterol level per se, is involved in early atherosclerosis-related lymphatic dysfunction. Enhancing lymphatic function in Ldlr-/- mice with a mutant form of VEGF-C (VEGF-C 152s), a selective VEGFR-3 agonist, successfully delayed atherosclerotic plaque onset when mice were subsequently fed a high-fat diet. However, the specific mechanisms by which LDLR protects against lymphatic function impairment is unknown. Methods and results: We have thus injected wild-type and Pcsk9-/- mice with an adeno-associated virus type 1 expressing a shRNA for silencing Ldlr in vivo. We herein report that lymphatic contractility is reduced upon Ldlr dowregulation in wild-type mice only. Our in vitro experiments reveal that a decrease in LDLR expression at the mRNA level reduces the chromosome duplication phase and the protein expression of VEGFR-3, a membrane-bound key lymphatic marker. Furthermore, it also significantly reduced the levels of 18 lipid subclasses, including key constituents of lipid rafts as well as the transcription of several genes involved in cholesterol biosynthesis and cellular and metabolic processes. Exogenous PCSK9 only reduces lymphatic endothelial-LDLR at the protein level and does not affect lymphatic endothelial cell integrity. This puts forward that PCSK9 may act upon lymphatic muscle cells to mediate its effect on lymphatic contraction capacity in vivo. Conclusion: Our results suggest that treatments that specifically palliate the down regulation of LDLR mRNA in lymphatic endothelial cells preserve the integrity of the lymphatic endothelium and sustain lymphatic function, a prerequisite player in atherosclerosis.


Subject(s)
Atherosclerosis , Hyperlipidemias , Animals , Atherosclerosis/genetics , Atherosclerosis/metabolism , Cholesterol/metabolism , Down-Regulation , Endothelial Cells/metabolism , Hyperlipidemias/metabolism , Lipids , Lipoproteins, LDL/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor Receptor-3/genetics , Vascular Endothelial Growth Factor Receptor-3/metabolism
9.
Curr Opin Lipidol ; 33(2): 139-145, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34581311

ABSTRACT

PURPOSE OF REVIEW: The primary cardioprotective function of high-density lipoprotein (HDL) is to remove excess cellular free cholesterol (FC) from peripheral tissues and deliver it to the liver. Here, we summarize recent research that examines apolipoprotein A-I (apoA-I) lipidation models by adenosine triphosphate binding cassette transporter A1 (ABCA1) and discuss its relevance in atherosclerotic cardiovascular disease (ASCVD). RECENT FINDINGS: The first step in HDL formation involves the interaction between apoA-I and ABCA1, where ABCA1 mediates the removal of FC and phospholipids from lipid-laden macrophages to form discoidal nascent HDL (nHDL). However, there are currently no clear-cut systematic models that characterize HDL formation. A number of recent studies have investigated the importance of apoA-I C- and N-terminal domains required for optimal cholesterol efflux and nHDL production. Furthermore, functional ABCA1 is required for direct or indirect binding to apoA-I where ABCA1 dimer-monomer interconversion facilitates apoA-I lipidation from plasma membrane microdomains. Microparticles are also another lipid source for apoA-I solubilization into nHDL. SUMMARY: ApoA-I and ABCA1 are key factors in macrophage-mediated cholesterol efflux and nHDL production. Understanding of the key steps in HDL formation may unlock the therapeutic potential of HDL and improve clinical management of ASCVD.


Subject(s)
ATP Binding Cassette Transporter 1 , Apolipoprotein A-I , Atherosclerosis , ATP Binding Cassette Transporter 1/metabolism , Apolipoprotein A-I/metabolism , Cholesterol/metabolism , Humans , Lipoproteins, HDL/metabolism
10.
Cell Signal ; 91: 110222, 2022 03.
Article in English | MEDLINE | ID: mdl-34954016

ABSTRACT

Adiponectin exerts its atheroprotection by stimulating adenosine triphosphate binding cassette transporter A1 (ABCA1)-mediated cholesterol efflux to apolipoprotein A-I (apoA-I). However, involvement of the apoA-I residues in this process have not been studied. In Tamm-Horsfall 1 (THP-1) macrophages and baby hamster kidney (BHK) cells we assessed adiponectin's potential to restore cholesterol efflux in the presence of apoA-I and ABCA1 mutants, respectively. Adiponectin was unable to restore efflux from THP-1 macrophages in the presence of apoA-I carboxy-terminal domain (CTD) successive mutants from residues 187-243 versus apoA-I mutants alone. Furthermore, adiponectin did not significantly influence cholesterol efflux to apoA-I from BHK-ABCA1 mutant cells. Adiponectin appears to require functional apoA-I CTD residues 187-243 and wild-type ABCA1 to mediate efficient cholesterol efflux from THP-1 macrophages and BHK cells, respectively. Therefore, adiponectin cannot rescue defective cholesterol efflux in apoA-I- or ABCA1-mutant conditions, but rather increases cholesterol efflux in wild-type apoA-I conditions compared to apoA-I exposure alone.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , Adiponectin/metabolism , Apolipoprotein A-I , ATP Binding Cassette Transporter 1/genetics , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Animals , Apolipoprotein A-I/chemistry , Apolipoprotein A-I/metabolism , Apolipoprotein A-I/pharmacology , Cell Line , Cholesterol/metabolism , Cricetinae , Humans , THP-1 Cells
11.
Arterioscler Thromb Vasc Biol ; 41(11): 2708-2725, 2021 11.
Article in English | MEDLINE | ID: mdl-34551590

ABSTRACT

Objective: To investigate the role of adipocyte Pcpe2 (procollagen C-endopeptidase enhancer 2) in SR-BI (scavenger receptor class BI)-mediated HDL-C (high-density lipoprotein cholesterol) uptake and contributions to adipose lipid storage. Approach and Results: Pcpe2, a glycoprotein devoid of intrinsic proteolytic activity, is believed to participate in extracellular protein-protein interactions, supporting SR-BI- mediated HDL-C uptake. In published studies, Pcpe2 deficiency increased the development of atherosclerosis by reducing SR-BI-mediated HDL-C catabolism, but the biological impact of this deficiency on adipocyte SR-BI-mediated HDL-C uptake is unknown. Differentiated cells from Ldlr-/-/Pcpe2-/- (Pcpe2-/-) mouse adipose tissue showed elevated SR-BI protein levels, but significantly reduced HDL-C uptake compared to Ldlr-/- (control) adipose tissue. SR-BI-mediated HDL-C uptake was restored by preincubation of cells with exogenous Pcpe2. In diet-fed mice lacking Pcpe2, significant reductions in visceral, subcutaneous, and brown adipose tissue mass were observed, despite elevations in plasma triglyceride and cholesterol concentrations. Significant positive correlations exist between adipose mass and Pcpe2 expression in both mice and humans. Conclusions: Overall, these findings reveal a novel and unexpected function for Pcpe2 in modulating SR-BI expression and function as it relates to adipose tissue expansion and cholesterol balance in both mice and humans.


Subject(s)
Adipocytes/metabolism , Atherosclerosis/metabolism , Cholesterol, HDL/metabolism , Glycoproteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Microdomains/metabolism , Obesity/metabolism , Scavenger Receptors, Class B/metabolism , Subcutaneous Fat/metabolism , Adipocytes/pathology , Adipogenesis , Adiposity , Adult , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , CHO Cells , Caveolin 1/metabolism , Cricetulus , Diet, High-Fat , Disease Models, Animal , Energy Metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Female , Glycoproteins/genetics , Humans , Inflammation Mediators/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Male , Membrane Microdomains/genetics , Membrane Microdomains/pathology , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Obesity/genetics , Obesity/pathology , Receptors, LDL/genetics , Receptors, LDL/metabolism , Scavenger Receptors, Class B/genetics , Subcutaneous Fat/pathology
12.
Antioxidants (Basel) ; 10(9)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34572970

ABSTRACT

Plaque psoriasis is a common inflammatory condition of the skin characterized by red, flaking lesions. Current therapies for plaque psoriasis target many facets of the autoimmune response, but there is an incomplete understanding of how oxidative damage produced by enzymes such as myeloperoxidase contributes to skin pathology. In this study, we used the Aldara (Imiquimod) cream model of plaque psoriasis in mice to assess myeloperoxidase inhibition for treating psoriatic skin lesions. To assess skin inflammation severity, an innovative mouse psoriasis scoring system was developed. We found that myeloperoxidase inhibition ameliorated psoriasis severity when administered either systemically or topically. The findings of this study support the role of oxidative damage in plaque psoriasis pathology and present potential new therapeutic avenues for further exploration.

13.
Science ; 373(6553)2021 07 23.
Article in English | MEDLINE | ID: mdl-34437091

ABSTRACT

The biogenesis of high-density lipoprotein (HDL) requires apoA1 and the cholesterol transporter ABCA1. Although the liver generates most of the HDL in the blood, HDL synthesis also occurs in the small intestine. Here, we show that intestine-derived HDL traverses the portal vein in the HDL3 subspecies form, in complex with lipopolysaccharide (LPS)-binding protein (LBP). HDL3, but not HDL2 or low-density lipoprotein, prevented LPS binding to and inflammatory activation of liver macrophages and instead supported extracellular inactivation of LPS. In mouse models involving surgical, dietary, or alcoholic intestinal insult, loss of intestine-derived HDL worsened liver injury, whereas outcomes were improved by therapeutics that elevated and depended upon raising intestinal HDL. Thus, protection of the liver from injury in response to gut-derived LPS is a major function of intestinally synthesized HDL.


Subject(s)
Intestine, Small/metabolism , Lipoproteins, HDL3/metabolism , Liver Diseases/prevention & control , Liver/metabolism , Portal Vein/metabolism , Acute-Phase Proteins/metabolism , Adult , Animals , Carrier Proteins/metabolism , Cholesterol, HDL/blood , Cholesterol, HDL/metabolism , Enterocytes/metabolism , Humans , Intestine, Small/surgery , Kupffer Cells/immunology , Kupffer Cells/metabolism , Lipopolysaccharide Receptors/metabolism , Lipopolysaccharides/metabolism , Lipoproteins, HDL3/blood , Liver/pathology , Liver Cirrhosis/pathology , Liver Cirrhosis/prevention & control , Liver Diseases/pathology , Liver X Receptors/metabolism , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Protein Binding , Signal Transduction , Toll-Like Receptor 4/metabolism
14.
Arterioscler Thromb Vasc Biol ; 41(2): 638-650, 2021 02.
Article in English | MEDLINE | ID: mdl-33267664

ABSTRACT

OBJECTIVE: Small GTPase Rap1 (Ras-association proximate 1) is a novel, positive regulator of NO release and endothelial function with a potentially key role in mechanosensing of atheroprotective, laminar flow. Our objective was to delineate the role of Rap1 in the progression of atherosclerosis and its specific functions in the presence and absence of laminar flow, to better define its role in endothelial mechanisms contributing to plaque formation and atherogenesis. Approach and Results: In a mouse atherosclerosis model, endothelial Rap1B deletion exacerbates atherosclerotic plaque formation. In the thoracic aorta, where laminar shear stress-induced NO is otherwise atheroprotective, plaque area is increased in Athero-Rap1BiΔEC (atherogenic endothelial cell-specific, tamoxifen-inducible Rap1A+Rap1B knockout) mice. Endothelial Rap1 deficiency also leads to increased plaque size, leukocyte accumulation, and increased CAM (cell adhesion molecule) expression in atheroprone areas, whereas vascular permeability is unchanged. In endothelial cells, in the absence of protective laminar flow, Rap1 deficiency leads to an increased proinflammatory TNF-α (tumor necrosis factor alpha) signaling and increased NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation and elevated inflammatory receptor expression. Interestingly, this increased signaling to NF-κB activation is corrected by AKTVIII-an inhibitor of Akt (protein kinase B) translocation to the membrane. Together, these data implicate Rap1 in restricting Akt-dependent signaling, preventing excessive cytokine receptor signaling and proinflammatory NF-κB activation. CONCLUSIONS: Via 2 distinct mechanisms, endothelial Rap1 protects from the atherosclerosis progression in the presence and absence of laminar flow; Rap1-stimulated NO release predominates in laminar flow, and restriction of proinflammatory signaling predominates in the absence of laminar flow. Our studies provide novel insights into the mechanisms underlying endothelial homeostasis and reveal the importance of Rap1 signaling in cardiovascular disease.


Subject(s)
Aorta/metabolism , Aortic Diseases/prevention & control , Atherosclerosis/prevention & control , Endothelial Cells/metabolism , Inflammation Mediators/metabolism , Inflammation/prevention & control , rap GTP-Binding Proteins/metabolism , Animals , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/metabolism , Aortic Diseases/pathology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cells, Cultured , Cytokines/metabolism , Diet, High-Fat , Disease Models, Animal , Disease Progression , Endothelial Cells/pathology , Female , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Leukocytes/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , NF-kappa B/metabolism , Nitric Oxide/metabolism , Plaque, Atherosclerotic , Signal Transduction , rap GTP-Binding Proteins/genetics , rap1 GTP-Binding Proteins/genetics , rap1 GTP-Binding Proteins/metabolism
16.
Cell Metab ; 31(4): 741-754.e5, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32197071

ABSTRACT

Identifying the causal gene(s) that connects genetic variation to a phenotype is a challenging problem in genome-wide association studies (GWASs). Here, we develop a systematic approach that integrates mouse liver co-expression networks with human lipid GWAS data to identify regulators of cholesterol and lipid metabolism. Through our approach, we identified 48 genes showing replication in mice and associated with plasma lipid traits in humans and six genes on the X chromosome. Among these 54 genes, 25 have no previously identified role in lipid metabolism. Based on functional studies and integration with additional human lipid GWAS datasets, we pinpoint Sestrin1 as a causal gene associated with plasma cholesterol levels in humans. Our validation studies demonstrate that Sestrin1 influences plasma cholesterol in multiple mouse models and regulates cholesterol biosynthesis. Our results highlight the power of combining mouse and human datasets for prioritization of human lipid GWAS loci and discovery of lipid genes.


Subject(s)
Cholesterol , Genome-Wide Association Study/methods , Heat-Shock Proteins/physiology , Animals , Cholesterol/blood , Cholesterol/metabolism , Databases, Genetic , Humans , Mice
17.
J Lipid Res ; 61(5): 676-686, 2020 05.
Article in English | MEDLINE | ID: mdl-33715815

ABSTRACT

Cellular membranes are not homogenous mixtures of proteins; rather, they are segregated into microdomains on the basis of preferential association between specific lipids and proteins. These microdomains, called lipid rafts, are well known for their role in receptor signaling on the plasma membrane (PM) and are essential to such cellular functions as signal transduction and spatial organization of the PM. A number of disease states, including atherosclerosis and other cardiovascular disorders, may be caused by dysfunctional maintenance of lipid rafts. Lipid rafts do not occur only in the PM but also have been found in intracellular membranes and extracellular vesicles (EVs). Here, we focus on discussing newly discovered functions of lipid rafts and microdomains in intracellular membranes, including lipid and protein trafficking from the ER, Golgi bodies, and endosomes to the PM, and we examine lipid raft involvement in the production and composition of EVs. Because lipid rafts are small and transient, visualization remains challenging. Future work with advanced techniques will continue to expand our knowledge about the roles of lipid rafts in cellular functioning.


Subject(s)
Cholesterol/metabolism , Homeostasis , Intracellular Space/metabolism , Membrane Microdomains/metabolism , Animals , Humans
18.
Arterioscler Thromb Vasc Biol ; 39(12): 2457-2467, 2019 12.
Article in English | MEDLINE | ID: mdl-31597448

ABSTRACT

The HDL (high-density lipoprotein) Workshop was established in 2009 as a forum for candid discussions among academic basic scientists, clinical investigators, and industry researchers about the role of HDL in cardiovascular disease. This ninth HDL Workshop was held on May 16 to 17, 2019 in Boston, MA, and included outstanding oral presentations from established and emerging investigators. The Workshop featured 5 sessions with topics that tackled the role of HDL in the vasculature, its structural complexity, its role in health and disease states, and its interaction with the intestinal microbiome. The highlight of the program was awarding the Jack Oram Award to the distinguished professor emeritus G.S. Getz from the University of Chicago. The tenth HDL Workshop will be held on May 2020 in Chicago and will continue the focus on intellectually stimulating presentations by established and emerging investigators on novel roles of HDL in cardiovascular and noncardiovascular health and disease states.


Subject(s)
Biomedical Research/methods , Blood Vessels/metabolism , Cardiology , Cardiovascular Diseases/metabolism , Cholesterol, HDL/metabolism , Hypolipidemic Agents/therapeutic use , Societies, Medical , Animals , Cardiovascular Diseases/prevention & control , Congresses as Topic , Humans
19.
Arterioscler Thromb Vasc Biol ; 39(5): 915-924, 2019 05.
Article in English | MEDLINE | ID: mdl-30894011

ABSTRACT

Objective- Aim of this study was to evaluate changes in LCAT (lecithin:cholesterol acyltransferase) concentration and activity in patients with an acute coronary syndrome, to investigate if these changes are related to the compromised capacity of HDL (high-density lipoprotein) to promote endothelial nitric oxide (NO) production, and to assess if rhLCAT (recombinant human LCAT) can rescue the defective vasoprotective HDL function. Approach and Results- Thirty ST-segment-elevation myocardial infarction (STEMI) patients were enrolled, and plasma was collected at hospital admission, 48 and 72 hours thereafter, at hospital discharge, and at 30-day follow-up. Plasma LCAT concentration and activity were measured and related to the capacity of HDL to promote NO production in cultured endothelial cells. In vitro studies were performed in which STEMI patients' plasma was added with rhLCAT and HDL vasoprotective activity assessed by measuring NO production in endothelial cells. The plasma concentration of the LCAT enzyme significantly decreases during STEMI with a parallel significant reduction in LCAT activity. HDL isolated from STEMI patients progressively lose the capacity to promote NO production by endothelial cells, and the reduction is related to decreased LCAT concentration. In vitro incubation of STEMI patients' plasma with rhLCAT restores HDL ability to promote endothelial NO production, possibly related to significant modification in HDL phospholipid classes. Conclusions- Impairment of cholesterol esterification may be a major factor in the HDL dysfunction observed during acute coronary syndrome. rhLCAT is able to restore HDL-mediated NO production in vitro, suggesting LCAT as potential therapeutic target for restoring HDL functionality in acute coronary syndrome.


Subject(s)
Acute Coronary Syndrome/blood , Acute Coronary Syndrome/physiopathology , Lipoproteins, HDL/blood , Phosphatidylcholine-Sterol O-Acyltransferase/blood , ST Elevation Myocardial Infarction/blood , ST Elevation Myocardial Infarction/enzymology , Biomarkers/blood , Cohort Studies , Female , Humans , Male , Nitric Oxide/metabolism , Prognosis , ST Elevation Myocardial Infarction/diagnostic imaging , Sensitivity and Specificity , Sterol O-Acyltransferase/blood
20.
Cell Metab ; 29(2): 475-487.e7, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30415924

ABSTRACT

Lipoproteins trapped in arteries drive atherosclerosis. Extravascular low-density lipoprotein undergoes receptor uptake, whereas high-density lipoprotein (HDL) interacts with cells to acquire cholesterol and then recirculates to plasma. We developed photoactivatable apoA-I to understand how HDL passage through tissue is regulated. We focused on skin and arteries of healthy mice versus those with psoriasis, which carries cardiovascular risk in man. Our findings suggest that psoriasis-affected skin lesions program interleukin-17-producing T cells in draining lymph nodes to home to distal skin and later to arteries. There, these cells mediate thickening of the collagenous matrix, such that larger molecules including lipoproteins become entrapped. HDL transit was rescued by depleting CD4+ T cells, neutralizing interleukin-17, or inhibiting lysyl oxidase that crosslinks collagen. Experimental psoriasis also increased vascular stiffness and atherosclerosis via this common pathway. Thus, interleukin-17 can reduce lipoprotein trafficking and increase vascular stiffness by, at least in part, remodeling collagen.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Interleukin-17/metabolism , Lipoproteins, HDL/metabolism , Psoriasis/metabolism , Skin/metabolism , Animals , Apolipoprotein A-I/metabolism , Atherosclerosis/metabolism , Biological Transport , CD4-Positive T-Lymphocytes/cytology , Disease Models, Animal , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein-Lysine 6-Oxidase/metabolism , Skin/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...