Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Res Sq ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38260333

ABSTRACT

Spinal cord stimulation (SCS) restores motor control after spinal cord injury (SCI) and stroke. This evidence led to the hypothesis that SCS facilitates residual supraspinal inputs to spinal motoneurons. Instead, here we show that SCS does not facilitate residual supraspinal inputs but directly triggers motoneurons action potentials. However, supraspinal inputs can shape SCS-mediated activity, mimicking volitional control of motoneuron firing. Specifically, by combining simulations, intraspinal electrophysiology in monkeys and single motor unit recordings in humans with motor paralysis, we found that residual supraspinal inputs transform subthreshold SCS-induced excitatory postsynaptic potentials into suprathreshold events. We then demonstrated that only a restricted set of stimulation parameters enables volitional control of motoneuron firing and that lesion severity further restricts the set of effective parameters. Our results explain the facilitation of voluntary motor control during SCS while predicting the limitations of this neurotechnology in cases of severe loss of supraspinal axons.

2.
medRxiv ; 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38076797

ABSTRACT

Spinal cord stimulation (SCS) restores motor control after spinal cord injury (SCI) and stroke. This evidence led to the hypothesis that SCS facilitates residual supraspinal inputs to spinal motoneurons. Instead, here we show that SCS does not facilitate residual supraspinal inputs but directly triggers motoneurons action potentials. However, supraspinal inputs can shape SCS-mediated activity, mimicking volitional control of motoneuron firing. Specifically, by combining simulations, intraspinal electrophysiology in monkeys and single motor unit recordings in humans with motor paralysis, we found that residual supraspinal inputs transform subthreshold SCS-induced excitatory postsynaptic potentials into suprathreshold events. We then demonstrated that only a restricted set of stimulation parameters enables volitional control of motoneuron firing and that lesion severity further restricts the set of effective parameters. Our results explain the facilitation of voluntary motor control during SCS while predicting the limitations of this neurotechnology in cases of severe loss of supraspinal axons.

3.
Nat Med ; 29(3): 689-699, 2023 03.
Article in English | MEDLINE | ID: mdl-36807682

ABSTRACT

Cerebral strokes can disrupt descending commands from motor cortical areas to the spinal cord, which can result in permanent motor deficits of the arm and hand. However, below the lesion, the spinal circuits that control movement remain intact and could be targeted by neurotechnologies to restore movement. Here we report results from two participants in a first-in-human study using electrical stimulation of cervical spinal circuits to facilitate arm and hand motor control in chronic post-stroke hemiparesis ( NCT04512690 ). Participants were implanted for 29 d with two linear leads in the dorsolateral epidural space targeting spinal roots C3 to T1 to increase excitation of arm and hand motoneurons. We found that continuous stimulation through selected contacts improved strength (for example, grip force +40% SCS01; +108% SCS02), kinematics (for example, +30% to +40% speed) and functional movements, thereby enabling participants to perform movements that they could not perform without spinal cord stimulation. Both participants retained some of these improvements even without stimulation and no serious adverse events were reported. While we cannot conclusively evaluate safety and efficacy from two participants, our data provide promising, albeit preliminary, evidence that spinal cord stimulation could be an assistive as well as a restorative approach for upper-limb recovery after stroke.


Subject(s)
Cervical Cord , Spinal Cord Injuries , Spinal Cord Stimulation , Stroke , Humans , Paresis/etiology , Paresis/therapy , Spinal Cord , Spinal Cord Injuries/complications , Spinal Cord Injuries/therapy , Stroke/complications , Stroke/therapy , Upper Extremity , Female , Adult , Middle Aged
4.
Trends Neurosci ; 45(8): 568-578, 2022 08.
Article in English | MEDLINE | ID: mdl-35659414

ABSTRACT

Despite advances in understanding of corticospinal motor control and stroke pathophysiology, current rehabilitation therapies for poststroke upper limb paresis have limited efficacy at the level of impairment. To address this problem, we make the conceptual case for a new treatment approach. We first summarize current understanding of motor control deficits in the arm and hand after stroke and their shared physiological mechanisms with spinal cord injury (SCI). We then review studies of spinal cord stimulation (SCS) for recovery of locomotion after SCI, which provide convincing evidence for enhancement of residual corticospinal function. By extrapolation, we argue for using cervical SCS to restore upper limb motor control after stroke.


Subject(s)
Cervical Cord , Motor Cortex , Spinal Cord Injuries , Stroke , Arm , Humans , Paresis/etiology , Paresis/therapy , Recovery of Function/physiology , Spinal Cord , Spinal Cord Injuries/complications , Spinal Cord Injuries/therapy , Stroke/complications , Stroke/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...