Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 928: 172285, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38599395

ABSTRACT

Tryptophan-like fluorescence (TLF) is used to indicate anthropogenic inputs of dissolved organic matter (DOM), typically from wastewater, in rivers. We hypothesised that other sources of DOM, such as groundwater and planktonic microbial biomass can also be important drivers of riverine TLF dynamics. We sampled 19 contrasting sites of the River Thames, UK, and its tributaries. Multivariate mixed linear models were developed for each site using 15 months of weekly water quality observations and with predictor variables selected according to the statistical significance of their linear relationship with TLF following a stepwise procedure. The variables considered for inclusion in the models were potassium (wastewater indicator), nitrate (groundwater indicator), chlorophyll-a (phytoplankton biomass), and Total bacterial Cells Counts (TCC) by flow cytometry. The wastewater indicator was included in the model of TLF at 89 % of sites. Groundwater was included in 53 % of models, particularly those with higher baseflow indices (0.50-0.86). At these sites, groundwater acted as a negative control on TLF, diluting other potential sources. Additionally, TCC was included positively in the models of six (32 %) sites. The models on the Thames itself using TCC were more rural sites with lower sewage inputs. Phytoplankton biomass (Chlorophyll-a) was only used in two (11 %) site models, despite the seasonal phytoplankton blooms. It is also notable that, the wastewater indicator did not always have the strongest evidence for inclusion in the models. For example, there was stronger evidence for the inclusion of groundwater and TCC than wastewater in 32 % and 5 % of catchments, respectively. Our study underscores the complex interplay of wastewater, groundwater, and planktonic microbes, driving riverine TLF dynamics, with their influence determined by site characteristics.


Subject(s)
Environmental Monitoring , Rivers , Tryptophan , Rivers/chemistry , Environmental Monitoring/methods , Tryptophan/analysis , Wastewater/chemistry , Groundwater/chemistry , Fluorescence , Water Pollutants, Chemical/analysis , Phytoplankton , Chlorophyll A/analysis
2.
Water Res ; 137: 301-309, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29554534

ABSTRACT

We assessed the utility of online fluorescence spectroscopy for the real-time evaluation of the microbial quality of untreated drinking water. Online fluorimeters were installed on the raw water intake at four groundwater-derived UK public water supplies alongside existing turbidity sensors that are used to forewarn of the presence of microbial contamination in the water industry. The fluorimeters targeted fluorescent dissolved organic matter (DOM) peaks at excitation/emission wavelengths of 280/365 nm (tryptophan-like fluorescence, TLF) and 280/450 nm (humic-like fluorescence, HLF). Discrete samples were collected for Escherichia coli, total bacterial cell counts by flow cytometry, and laboratory-based fluorescence and absorbance. Both TLF and HLF were strongly correlated with E. coli (ρ = 0.71-0.77) and total bacterial cell concentrations (ρ = 0.73-0.76), whereas the correlations between turbidity and E. coli (ρ = 0.48) and total bacterial cell counts (ρ = 0.40) were much weaker. No clear TLF peak was observed at the sites and all apparent TLF was considered to be optical bleed-through from the neighbouring HLF peak. Therefore, a HLF fluorimeter alone would be sufficient to evaluate the microbial water quality at these sources. Fluorescent DOM was also influenced by site operations such as pump start-up and the precipitation of cations on the sensor windows. Online fluorescent DOM sensors are a better indicator of the microbial quality of untreated drinking water than turbidity and they have wide-ranging potential applications within the water industry.


Subject(s)
Drinking Water/microbiology , Spectrometry, Fluorescence/methods , Water Quality , Drinking Water/chemistry , England , Escherichia coli , Flow Cytometry , Fluorescence , Groundwater/microbiology , Tryptophan/chemistry , Water Microbiology , Water Supply
3.
Water Res ; 88: 923-932, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26618806

ABSTRACT

Open defecation is practised by over 600 million people in India and there is a strong political drive to eliminate this through the provision of on-site sanitation in rural areas. However, there are concerns that the subsequent leaching of excreta from subsurface storage could be adversely impacting underlying groundwater resources upon which rural populations are almost completely dependent for domestic water supply. We investigated this link in four villages undergoing sanitary interventions in Bihar State, India. A total of 150 supplies were sampled for thermotolerant (faecal) coliforms (TTC) and tryptophan-like fluorescence (TLF): an emerging real-time indicator of faecal contamination. Sanitary risk inspections were also performed at all sites, including whether a supply was located within 10 m of a toilet, the recommended minimum separation. Overall, 18% of water supplies contained TTCs, 91% of which were located within 10 m of a toilet, 58% had TLF above detection limit, and sanitary risk scores were high. Statistical analysis demonstrated TLF was an effective indicator of TTC presence-absence, with a possibility of TTCs only where TLF exceeded 0.4 µg/L dissolved tryptophan. Analysis also indicated proximity to a toilet was the only significant sanitary risk factor predicting TTC presence-absence and the most significant predictor of TLF. Faecal contamination was considered a result of individual water supply vulnerability rather than indicative of widespread leaching into the aquifer. Therefore, increasing faecal contamination of groundwater-derived potable supplies is inevitable across the country as uptake of on-site sanitation intensifies. Communities need to be aware of this link and implement suitable decentralised low-cost treatment of water prior to consumption and improve the construction and protection of new supplies.


Subject(s)
Drinking Water/microbiology , Environmental Monitoring , Fluorescence , Sanitation/methods , Tryptophan/chemistry , Water Supply , Feces/microbiology , Humans , India , Rural Population
4.
Sci Total Environ ; 538: 888-95, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26363144

ABSTRACT

Quantitative PCR (qPCR) can rapidly screen for an array of faecally-derived bacteria, which can be employed as tracers to understand groundwater vulnerability to faecal contamination. A microbial DNA qPCR array was used to examine 45 bacterial targets, potentially relating to enteric pathogens, in 22 groundwater supplies beneath the city of Kabwe, Zambia in both the dry and subsequent wet season. Thermotolerant (faecal) coliforms, sanitary risks, and tryptophan-like fluorescence, an emerging real-time reagentless faecal indicator, were also concurrently investigated. There was evidence for the presence of enteric bacterial contamination, through the detection of species and group specific 16S rRNA gene fragments, in 72% of supplies where sufficient DNA was available for qPCR analysis. DNA from the opportunistic pathogen Citrobacter freundii was most prevalent (69% analysed samples), with Vibrio cholerae also perennially persistent in groundwater (41% analysed samples). DNA from other species such as Bifidobacterium longum and Arcobacter butzleri was more seasonally transient. Bacterial DNA markers were most common in shallow hand-dug wells in laterite/saprolite implicating rapid subsurface pathways and vulnerability to pollution at the surface. Boreholes into the underlying dolomites were also contaminated beneath the city highlighting that a laterite/saprolite overburden, as occurs across much of sub-Saharan aquifer, does not adequately protect underlying bedrock groundwater resources. Nevertheless, peri-urban boreholes all tested negative establishing there is limited subsurface lateral transport of enteric bacteria outside the city limits. Thermotolerant coliforms were present in 97% of sites contaminated with enteric bacterial DNA markers. Furthermore, tryptophan-like fluorescence was also demonstrated as an effective indicator and was in excess of 1.4µg/L in all contaminated sites.


Subject(s)
Enterobacteriaceae/growth & development , Environmental Monitoring , Groundwater/microbiology , Water Microbiology , Africa South of the Sahara , Enterobacteriaceae/classification , Enterobacteriaceae/genetics , RNA, Ribosomal, 16S
5.
Water Res ; 81: 38-46, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26026711

ABSTRACT

Enteric pathogens are typically inferred from the presence of surrogate indicator organisms such as thermotolerant (faecal) coliforms (TTCs). The analysis of TTCs requires time-consuming incubation in suitable laboratories, which can limit sampling resolution, particularly during critical pollution events. Here, we demonstrate the use of in-situ fluorimeters targeting tryptophan-like compounds as a rapid, reagentless indicator of TTCs in groundwater-derived potable water supplies in Africa. A range of other common indicators of TTCs were also determined including nitrate, turbidity, and sanitary risk survey scores. Sampling was conducted during both the dry and wet seasons to investigate seasonality. Tryptophan-like fluorescence was the most effective predictor of both presence/absence and number of TTCs during both seasons. Seasonal changes in tryptophan-like fluorescence in deeper supplies suggest it is transported more efficiently through the aquifer than TTCs. Moreover, the perennial elevated concentrations in some wells suggest it is more resilient than TTCs in groundwater. Therefore tryptophan-like fluorescence could also be a better indicator of some smaller, more easily transported, and long-lived, pathogenic enteric viruses. These sensors have the potential to be included in real-time pollution alert systems for drinking water supplies throughout the world, as well as for mapping enteric pathogen risks in developing regions.


Subject(s)
Drinking Water/analysis , Environmental Monitoring/methods , Tryptophan/analysis , Drinking Water/microbiology , Groundwater/analysis , Groundwater/microbiology , Nitrates/analysis , Seasons , Spectrometry, Fluorescence , Water Microbiology , Zambia
6.
Environ Sci Process Impacts ; 17(4): 740-52, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25756677

ABSTRACT

Tryptophan-like fluorescence (TLF) is an indicator of human influence on water quality as TLF peaks are associated with the input of labile organic carbon (e.g. sewage or farm waste) and its microbial breakdown. Hence, real-time measurement of TLF could be particularly useful for monitoring water quality at a higher temporal resolution than available hitherto. However, current understanding of TLF quenching/interference is limited for field deployable sensors. We present results from a rigorous test of two commercially available submersible tryptophan fluorometers (ex ∼ 285, em ∼ 350). Temperature quenching and turbidity interference were quantified in the laboratory and compensation algorithms developed. Field trials were then undertaken involving: (i) an extended deployment (28 days) in a small urban stream; and, (ii) depth profiling of an urban multi-level borehole. TLF was inversely related to water temperature (regression slope range: -1.57 to -2.50). Sediment particle size was identified as an important control on the turbidity specific TLF response, with signal amplification apparent <150 NTU for clay particles and <650 NTU for silt particles. Signal attenuation was only observed >200 NTU for clay particles. Compensation algorithms significantly improved agreement between in situ and laboratory readings for baseflow and storm conditions in the stream. For the groundwater trial, there was an excellent agreement between laboratory and raw in situ TLF; temperature compensation provided only a marginal improvement, and turbidity corrections were unnecessary. These findings highlight the potential utility of real time TLF monitoring for a range of environmental applications (e.g. tracing polluting sources and monitoring groundwater contamination). However, in situations where high/variable suspended sediment loads or rapid changes in temperature are anticipated concurrent monitoring of turbidity and temperature is required and site specific calibration is recommended for long term, surface water monitoring.


Subject(s)
Environmental Monitoring/methods , Fresh Water/chemistry , Temperature , Tryptophan/analysis , Water Pollutants/analysis , Fluorescence
7.
Water Res ; 72: 51-63, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25172215

ABSTRACT

The occurrence of emerging organic contaminants within the aquatic environment in Africa is currently unknown. This study provides early insights by characterising a broad range of emerging organic contaminants (n > 1000) in groundwater sources in Kabwe, Zambia. Groundwater samples were obtained during both the dry and wet seasons from a selection of deep boreholes and shallow wells completed within the bedrock and overlying superficial aquifers, respectively. Groundwater sources were distributed across the city to encompass peri-urban, lower cost housing, higher cost housing, and industrial land uses. The insect repellent DEET was ubiquitous within groundwater at concentrations up to 1.8 µg/L. Other compounds (n = 26) were detected in less than 15% of the sources and included the bactericide triclosan (up to 0.03 µg/L), chlorination by-products - trihalomethanes (up to 50 µg/L), and the surfactant 2,4,7,9-tetramethyl-5-decyne-4,7-diol (up to 0.6 µg/L). Emerging contaminants were most prevalent in shallow wells sited in low cost housing areas. This is attributed to localised vulnerability associated with inadequate well protection, sanitation, and household waste disposal. The five-fold increase in median DEET concentration following the onset of the seasonal rains highlights that more mobile compounds can rapidly migrate from the surface to the aquifer suggesting the aquifer is more vulnerable than previously considered. Furthermore it suggests DEET is potentially useful as a wastewater tracer in Africa. There was a general absence of personal care products, life-style compounds, and pharmaceuticals which are commonly detected in the aquatic environment in the developed world. This perhaps reflects some degree of attenuation within the subsurface, but could also be a result of the current limited use of products containing emerging contaminants by locals due to unaffordability and unavailability. As development and population increases in Africa, it is likely a wider-range of emerging contaminants will be released into the environment.


Subject(s)
Cities , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Africa , DEET/analysis , Developed Countries , Electric Conductivity , Geography , Models, Theoretical , Risk Factors , Water Pollution/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...