Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36850247

ABSTRACT

(1) Background: The current limitations of glioblastoma (GBM) chemotherapy were addressed by developing a molecularly imprinted polymer (MIP)-based drug reservoir designed for the localized and sustained release of ruxolitinib (RUX) within the tumor post-resection cavity, targeting residual infiltrative cancerous cells, with minimum toxic effects toward normal tissue. (2) Methods: MIP reservoirs were synthesized by precipitation polymerization using acrylamide, trifluoromethacrylic acid, methacrylic acid, and styrene as monomers. Drug release profiles were evaluated by real-time and accelerated release studies in phosphate-buffered solution as a release medium. The cytotoxicity of polymers and free monomers was evaluated in vitro on GBM C6 cells using the Alamar Blue assay, optical microscopy, and CCK8 cell viability assay. (3) Results: Among the four synthesized MIPs, trifluoromethacrylic acid-based polymer (MIP 2) was superior in terms of loading capacity (69.9 µg RUX/mg MIP), drug release, and efficacy on GBM cells. Accelerated drug release studies showed that, after 96 h, MIP 2 released 42% of the loaded drug at pH = 7.4, with its kinetics fitted to the Korsmeyer-Peppas model. The cell viability assay proved that all studied imprinted polymers provided high efficacy on GBM cells. (4) Conclusions: Four different drug-loaded MIPs were developed and characterized within this study, with the purpose of obtaining a drug delivery system (DDS) embedded in a fibrin-based hydrogel for the local, post-surgical administration of RUX in GBM in animal models. MIP 2 emerged as superior to the others, making it more suitable and promising for further in vivo testing.

2.
Antioxidants (Basel) ; 11(5)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35624757

ABSTRACT

The antitumoral, antioxidant, and anti-inflammatory effects of flaxseed ethanol extract was screened. Phytochemical analysis was performed by measuring the total phenolic content and by HPLC-DAD-ESI MS. In vitro antiproliferative activity was appreciated by MMT test of four adenocarcinomas and two normal cell lines. In vitro, antioxidant activity was evaluated by DPPH, FRAP, H2O2, and NO scavenging tests. The in vivo growth inhibitory activity against Ehrlich ascites carcinoma (EAC) in female BALB/c mice was determined using the trypan blue test. In EAC mice serum and ascites total oxidative status, total antioxidant reactivity, oxidative stress index, malondialdehyde, total thiols, total nitrites, 3-nitrotyrosine, and NFkB were measured. The phytochemical analysis found an significant content of phenols, with lignans having the highest concentration. The extract had an significant in vitro antioxidant effect and different inhibitory effects on different cell lines. After treatment of EAC mice with flaxseeds extract, body weight, ascites volume and viable tumour cell count, serum and ascites oxidative stress, and inflammatory markers decreased significantly. The ethanol flaxseeds extract has potential antiproliferative activity against some ovary and endometrial malignant cells and EAC. This effect can be attributed to the phenols content, and its antioxidant and anti-inflammatory activity.

3.
Int J Mol Sci ; 22(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34681739

ABSTRACT

This review focuses on the clinical translation of preclinical studies, especially those that have used stem cells in the treatment of glaucoma, with an emphasis on optic nerve regeneration. The studies referred to in the review aim to treat optic nerve atrophy, while cell therapies targeting other sites in the eye, such as the trabecular meshwork, have not been addressed. Such complex and varied pathophysiological mechanisms that lead to glaucoma may explain the fact that although stem cells have a high capacity of neuronal regeneration, the treatments performed did not have the expected results and the promise offered by animal studies was not achieved. By analyzing the facts associated with failure, important lessons are to be learned: the type of stem cells that are used, the route of administration, the selection of patients eligible for these treatments, additional therapies that support stem cells transplantation and their mode of action, methods of avoiding the host's immune response. Many of these problems could be solved using exosomes (EV), but also miRNA, which allows more targeted approaches with minimal side effects.


Subject(s)
Glaucoma/etiology , Glaucoma/therapy , Retinal Ganglion Cells/pathology , Stem Cells , Clinical Trials as Topic , Exosomes , Glaucoma/physiopathology , Humans , MicroRNAs , Nerve Regeneration , Optic Nerve/physiology , Stem Cell Transplantation
4.
Exp Ther Med ; 22(5): 1336, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34630690

ABSTRACT

Basal cell carcinoma (BCC) is the most frequent form of skin cancer and is not a tumor with a lethal outcome if diagnosed and treated adequately. The gold standard for treatment is surgical excision with histologically safe margins. Even so, tumors excised with free margins may recur after a period of time. The identification of predictive factors for the recurrence of BCCs besides the localization, size and aggressive histology may be useful for the clinician. The aim of the present study was to identify clinical and pathological factors associated with recurrence in tumors with histologically free margins and assess via immunohistochemical staining, the expression of glioma-associated oncogene homolog 1 (GLI1), yes-associated protein (YAP), connective tissue growth factor (CTGF) and E-cadherin as they are involved in the development of BCCs, in the hope of identifying markers that are predictive for recurrence. In total, 8 recurrent BCCs and 38 non-recurrent tumors were analyzed. A Breslow index >2 (Se 100.0%, Sp 67.5%, P=0.008), Clark level >3 (Se 100.0%, Sp 47.5%, P<0.001), and excision margins both lateral (Se 87.5%, Sp 60.0%, P=0.04) and deep (Se 75.0%, Sp 82.5%, P<0.001) free from tumoral cells ≤1 mm proved to be predictive for recurrence in the present study. Recurrence may appear even after more than 3 years since the initial excision (Se 87.50%, Sp 70.0%, P<0.001). The expression levels of GLI1, YAP and E-cadherin were not different in the recurrent vs. non-recurrent BCCs. However, the low expression of CTGF may indicate a tumor with a higher aggressiveness. In conclusion, close follow-up of patients with excised BCCs at least annually is recommended and re-excision should be taken into consideration for locally advanced tumors especially if they are located in high-risk areas or those with histologically free margins <1 mm.

5.
Medicina (Kaunas) ; 56(11)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198232

ABSTRACT

Background and objective: The aim of the present study was to establish a new differentiation protocol using cannabidiol (CBD) and vitamin D3 (Vit. D3) for a better and faster osteogenic differentiation of dental tissue derived mesenchymal stem cells (MSCs). Materials and methods: MSCs were harvested from dental follicle (DFSCs), dental pulp (DPSCs), and apical papilla (APSCs) of an impacted third molar of a 17-year old patient. The stem cells were isolated and characterized using flow cytometry; reverse transcription polymerase chain reaction (RT-PCR); and osteogenic, chondrogenic, and adipogenic differentiation. The effects of CBD and Vit. D3 on osteogenic differentiation of dental-derived stem cell were evaluated in terms of viability/metabolic activity by alamar test, expression of collagen1A, osteopontin (OP), osteocalcin (OC), and osteonectin genes and by quantification of calcium deposits by alizarin red assay. Results: Stem cell characterization revealed more typical stemness characteristics for DFSCs and DPSCs and atypical morphology and markers expression for APSCs, a phenotype that was confirmed by differences in multipotential ability. The RT-PCR quantification of bone matrix proteins expression revealed a different behavior for each cell type, APSCs having the best response for CBD. DPSCs showed the best osteogenic potential when treated with Vit. D3. Cultivation of DFSC in standard stem cell conditions induced the highest expression of osteogenic genes, suggesting the spontaneous differentiation capacity of these cells. Regarding mineralization, alizarin red assay indicated that DFSCs and APSCs were the most responsive to low doses of CBD and Vit. D3. DPSCs had the lowest mineralization levels, with a slightly better response to Vit. D3. Conclusions: This study provides evidence that DFSCs, DPSCs, and APSCs respond differently to osteoinduction stimuli and that CBD and Vit. D3 can enhance osteogenic differentiation of these types of cells under certain conditions and doses.


Subject(s)
Cannabidiol , Mesenchymal Stem Cells , Adolescent , Cannabidiol/pharmacology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Cholecalciferol/pharmacology , Humans , Osteogenesis
6.
Molecules ; 25(3)2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31979068

ABSTRACT

Despite recent advances in disease management and prevention, heart failure (HF) prevalence is still high. Hypertension, inflammation and oxidative stress are being investigated as important causative processes in HF. L. barbarum L. polysaccharides (LBPs) are widely used for their anti-inflammatory and antioxidant properties. Thus, the aim of the present study was to evaluate the effects of LBPs on inflammation and oxidative stress markers in a pressure overload-induced HF rat model, surgically induced by abdominal aorta banding in Wistar rats (AAB) (n = 28). Also, control rats (n = 10) were subjected to a sham operation. After echocardiographic confirmation of HF (week 24), AAB rats were divided into three groups: rats treated with LBPs for 12 weeks: 100 mg/kg body weight /day (AAB_100, n = 9), 200 mg/kg body weight /day (AAB_200, n = 7) and no-treatment group (control AAB, n = 12). After 12 weeks of treatment with LBPs, the decline of cardiac function was prevented compared to the control AAB rats. Treatment with 200 mg/kg body weight /day LBPs significantly reduced the inflammation as seen by cytokine levels (IL-6 and TNF-α) and the plasma lipid peroxidation, as seen by malondialdehyde levels. These results suggest that LBPs present anti-inflammatory and antioxidant effects with utility in a HF animal model and encourage further investigation of the cardioprotective effects of these polysaccharides.


Subject(s)
Heart Failure/drug therapy , Heart Failure/metabolism , Lycium/chemistry , Oxidative Stress/drug effects , Polysaccharides/chemistry , Polysaccharides/therapeutic use , Animals , Antioxidants/metabolism , Echocardiography , Interleukin-6/metabolism , Male , Malondialdehyde/metabolism , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism
7.
Eur J Oral Sci ; 127(4): 304-312, 2019 08.
Article in English | MEDLINE | ID: mdl-31270880

ABSTRACT

Periodontitis progresses due to increased levels of active metalloproteinases (MMPs) and the imbalance between MMPs and their tissue inhibitors (TIMPs). Natural curcumin limits the lytic activity of MMPs but has low cellular uptake. Use of synthetic curcumin analogs could be a means of overcoming this limitation of treatment efficiency. Human periodontal stem cells were isolated from gingival tissue, gingival ligament fibers, periodontal ligament, and alveolar bone. The effect of five synthetic curcumin analogs was compared with that of natural curcumin by assessing cytotoxicity [by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay], the cellular uptake (by fluorometry), the proteolytic activities of MMP-2 and -9 (by zymography), and the levels of TIMP-1 (by ELISA). Our results indicated increased cytotoxicity of synthetic curcumins for doses between 100 and 250 µM. At a concentration of 10 µM, cellular uptake of synthetic curcumins varied depending on their chemical structure. The curcumin compounds modulated pro-MMP-2 levels and increased TIMP-1 production. There was no detectable synthesis of pro-MMP-9 and no activation of MMPs 2 and 9. Gingival tissue and gingival ligament fiber stem cells were most responsive to treatment, showing inverse correlations between pro-MMP-2 and TIMP-1 levels. In conclusion, synthetic curcumins influenced the balance between pro-MMP-2 and TIMP-1 in human periodontal stem cells in vitro, and this could open perspectives for their application as adjuvants in periodontal therapy.


Subject(s)
Curcumin/analogs & derivatives , Curcumin/pharmacology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Stem Cells/drug effects , Tissue Inhibitor of Metalloproteinase-1/metabolism , Cells, Cultured , Humans , Periodontitis
8.
Stem Cells Int ; 2016: 1236721, 2016.
Article in English | MEDLINE | ID: mdl-27293444

ABSTRACT

Currently, there is no cure for the permanent vision loss caused by degenerative retinal diseases. One of the novel therapeutic strategies aims at the development of stem cells (SCs) based neuroprotective and regenerative medicine. The main sources of SCs for the treatment of retinal diseases are the embryo, the bone marrow, the region of neuronal genesis, and the eye. The success of transplantation depends on the origin of cells, the route of administration, the local microenvironment, and the proper combinative formula of growth factors. The feasibility of SCs based therapies for degenerative retinal diseases was proved in the preclinical setting. However, their translation into the clinical realm is limited by various factors: the immunogenicity of the cells, the stability of the cell phenotype, the predilection of SCs to form tumors in situ, the abnormality of the microenvironment, and the association of a synaptic rewiring. To improve SCs based therapies, nanotechnology offers a smart delivery system for biomolecules, such as growth factors for SCs implantation and differentiation into retinal progenitors. This review explores the main advances in the field of retinal transplantology and applications of nanotechnology in the treatment of retinal diseases, discusses the challenges, and suggests new therapeutic approaches in retinal transplantation.

9.
J Cell Mol Med ; 19(9): 2253-61, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26081945

ABSTRACT

We studied whether the serum levels of glial fibrillary acidic protein (GFAP) and of antibodies against the N-methyl-d-aspartate receptor subunit NR2 (NR2 RNMDA ) can discriminate between intracerebral haemorrhage (ICH) and ischaemic stroke (IS) in stroke patients. We prospectively recruited patients with suspected stroke (72 confirmed) and 52 healthy controls. The type of brain lesion (ICH or IS) was established using brain imaging. The levels of GFAP and of antibodies against NR2 RNMDA were measured in blood samples obtained within 12 hrs after stroke onset and 24, 48 and 72 hrs and 1 and 2 weeks later using ELISA immunoassay. Improvement in diagnostic performance was assessed in logistic regression models designed to predict the diagnosis and the type of stroke. GFAP peaks early during haemorrhagic brain lesions (at significantly higher levels), and late in ischaemic events, whereas antibodies against NR2 RNMDA have significantly higher levels during IS at all time-points. Neither of the two biomarkers used on its own could sufficiently discriminate patients, but when they are used in combination they can differentiate at 12 hrs after stroke, between ischaemic and haemorrhagic stroke with a sensitivity and specificity of 94% and 91%, respectively.


Subject(s)
Antibodies/metabolism , Cerebrovascular Disorders/metabolism , Glial Fibrillary Acidic Protein/metabolism , Protein Subunits/metabolism , Receptors, N-Methyl-D-Aspartate/immunology , Acute Disease , Aged , Biomarkers/metabolism , Female , Humans , Logistic Models , Male , Middle Aged , ROC Curve , Stroke/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...