Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Sci Transl Med ; 14(627): eabj1996, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34698501

ABSTRACT

Safe and effective vaccines against coronavirus disease 2019 (COVID-19) are essential for ending the ongoing pandemic. Although impressive progress has been made with several COVID-19 vaccines already approved, it is clear that those developed so far cannot meet the global vaccine demand alone. We describe a COVID-19 vaccine based on a replication-defective gorilla adenovirus expressing the stabilized prefusion severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein named GRAd-COV2. We assessed the safety and immunogenicity of a single-dose regimen of this vaccine in healthy younger and older adults to select the appropriate dose for each age group. For this purpose, a phase 1, dose-escalation, open-labeled trial was conducted including 90 healthy participants (45 aged 18 to 55 years old and 45 aged 65 to 85 years old) who received a single intramuscular administration of GRAd-COV2 at three escalating doses. Local and systemic adverse reactions were mostly mild or moderate and of short duration, and no serious adverse events were reported. Four weeks after vaccination, seroconversion to spike protein and receptor binding domain was achieved in 43 of 44 young volunteers and in 45 of 45 older participants. Consistently, neutralizing antibodies were detected in 42 of 44 younger-age and 45 of 45 older-age volunteers. In addition, GRAd-COV2 induced a robust and T helper 1 cell (TH1)­skewed T cell response against the spike protein in 89 of 90 participants from both age groups. Overall, the safety and immunogenicity data from the phase 1 trial support the further development of this vaccine.


Subject(s)
Adenovirus Vaccines , COVID-19 , Adenoviridae , Aged , Animals , COVID-19 Vaccines , Gorilla gorilla , Humans , SARS-CoV-2
2.
Mol Ther ; 29(8): 2412-2423, 2021 08 04.
Article in English | MEDLINE | ID: mdl-33895322

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by the emergent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens global public health, and there is an urgent need to develop safe and effective vaccines. Here, we report the generation and the preclinical evaluation of a novel replication-defective gorilla adenovirus-vectored vaccine encoding the pre-fusion stabilized Spike (S) protein of SARS-CoV-2. We show that our vaccine candidate, GRAd-COV2, is highly immunogenic both in mice and macaques, eliciting both functional antibodies that neutralize SARS-CoV-2 infection and block Spike protein binding to the ACE2 receptor, and a robust, T helper (Th)1-dominated cellular response. We show here that the pre-fusion stabilized Spike antigen is superior to the wild type in inducing ACE2-interfering, SARS-CoV-2-neutralizing antibodies. To face the unprecedented need for vaccine manufacturing at a massive scale, different GRAd genome deletions were compared to select the vector backbone showing the highest productivity in stirred tank bioreactors. This preliminary dataset identified GRAd-COV2 as a potential COVID-19 vaccine candidate, supporting the translation of the GRAd-COV2 vaccine in a currently ongoing phase I clinical trial (ClinicalTrials.gov: NCT04528641).


Subject(s)
Adenoviridae/immunology , Adenovirus Vaccines/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Gorilla gorilla/immunology , Immunogenicity, Vaccine/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Cell Line, Tumor , Female , Genetic Vectors/immunology , Gorilla gorilla/virology , HEK293 Cells , HeLa Cells , Humans , Macaca , Male , Mice , Mice, Inbred BALB C , Middle Aged , Pandemics/prevention & control , Young Adult
3.
Sci Rep ; 9(1): 17014, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31745113

ABSTRACT

Enterohemorrhagic E. coli (EHEC) is a major cause of large outbreaks worldwide associated with hemorrhagic colitis and hemolytic uremic syndrome. While vaccine development is warranted, a licensed vaccine, specific for human use, against EHEC is not yet available. In this study, the reverse vaccinology approach combined with genomic, transcriptional and molecular epidemiology data was applied on the EHEC O157:H7 genome to select new potential vaccine candidates. Twenty-four potential protein antigens were identified and one of them (MC001) was successfully expressed onto Generalized Modules for Membrane Antigens (GMMA) delivery system. GMMA expressing this vaccine candidate was immunogenic, raising a specific antibody response. Immunization with the MC001 candidate was able to reduce the bacterial load of EHEC O157:H7 strain in feces, colon and caecum tissues after murine infection. MC001 is homologue to lipid A deacylase enzyme (LpxR), and to our knowledge, this is the first study describing it as a potential vaccine candidate. Gene distribution and sequence variability analysis showed that MC001 is present and conserved in EHEC and in enteropathogenic E. coli (EPEC) strains. Given the high genetic variability among and within E. coli pathotypes, the identification of such conserved antigen suggests that its inclusion in a vaccine might represent a solution against major intestinal pathogenic strains.


Subject(s)
Carboxylic Ester Hydrolases/immunology , Escherichia coli Infections/prevention & control , Escherichia coli O157/immunology , Escherichia coli Proteins/immunology , Escherichia coli Vaccines/immunology , Hemolytic-Uremic Syndrome/prevention & control , Animals , Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Escherichia coli Infections/microbiology , Hemolytic-Uremic Syndrome/microbiology , Mice , Mice, Inbred BALB C
4.
F1000Res ; 6: 1228, 2017.
Article in English | MEDLINE | ID: mdl-28781769

ABSTRACT

Neisseria meningitidis is a harmless commensal bacterium finely adapted to humans. Unfortunately, under "privileged" conditions, it adopts a "devious" lifestyle leading to uncontrolled behavior characterized by the unleashing of molecular weapons causing potentially lethal disease such as sepsis and acute meningitis. Indeed, despite the lack of a classic repertoire of virulence genes in N. meningitidis separating commensal from invasive strains, molecular epidemiology and functional genomics studies suggest that carriage and invasive strains belong to genetically distinct populations characterized by an exclusive pathogenic potential. In the last few years, "omics" technologies have helped scientists to unwrap the framework drawn by N. meningitidis during different stages of colonization and disease. However, this scenario is still incomplete and would benefit from the implementation of physiological tissue models for the reproduction of mucosal and systemic interactions in vitro. These emerging technologies supported by recent advances in the world of stem cell biology hold the promise for a further understanding of N. meningitidis pathogenesis.

5.
FEMS Microbiol Lett ; 363(16)2016 08.
Article in English | MEDLINE | ID: mdl-27465489

ABSTRACT

Shiga toxin-encoding Escherichia coli (STEC) regroup strains that carry genes encoding Shiga toxin (Stx). Among intestinal pathogenic E. coli, enterohaemorrhagic E. coli (EHEC) constitute the major subgroup of virulent STEC. EHEC cause serious human disease such as haemorrhagic colitis and haemolytic-uremic syndrome. While EHEC have evolved from enteropathogenic E. coli, hybrids with enteroaggregative E. coli have recently emerged. Of note, some enteroinvasive E. coli also belong to the STEC group. While the LEE (locus of enterocyte effacement) is a key and prominent molecular determinant in the pathogenicity, neither all EHEC nor STEC contain the LEE, suggesting that they possess additional virulence and colonisation factors. Currently, nine protein secretion systems have been described in diderm-lipopolysaccharide bacteria (archetypal Gram-negative) and can be involved in the secretion of extracellular effectors, cell-surface proteins or assembly of cell-surface organelles, such as flagella or pili. In this review, we focus on the secretome of STEC and related enteropathotypes, which are relevant to the colonisation of biotic and abiotic surfaces. Considering the wealth of potential protein trafficking mechanisms, the different combinations of colonisation factors and modulation of their expression is further emphasised with regard to the ecophysiology of STEC.


Subject(s)
Bacterial Secretion Systems , Enterohemorrhagic Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Proteome/metabolism , Shiga-Toxigenic Escherichia coli/metabolism , Bacterial Outer Membrane Proteins/metabolism , Enterohemorrhagic Escherichia coli/growth & development , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Genes, Bacterial , Humans , Shiga-Toxigenic Escherichia coli/growth & development , Virulence , Virulence Factors
6.
Clin Vaccine Immunol ; 23(6): 442-50, 2016 06.
Article in English | MEDLINE | ID: mdl-27030589

ABSTRACT

Staphylococcus aureus alpha-hemolysin (Hla) assembles into heptameric pores on the host cell membrane, causing lysis, apoptosis, and junction disruption. Herein, we present the design of a newly engineered S. aureus alpha-toxin, HlaPSGS, which lacks the predicted membrane-spanning stem domain. This protein is able to form heptamers in aqueous solution in the absence of lipophilic substrata, and its structure, obtained by transmission electron microscopy and single-particle reconstruction analysis, resembles the cap of the wild-type cytolytic Hla pore. HlaPSGS was found to be impaired in binding to host cells and to its receptor ADAM10 and to lack hemolytic and cytotoxic activity. Immunological studies using human sera as well as sera from mice convalescent from S. aureus infection suggested that the heptameric conformation of HlaPSGS mimics epitopes exposed by the cytolytic Hla pore during infection. Finally, immunization with this newly engineered Hla generated high protective immunity against staphylococcal infection in mice. Overall, this study provides unprecedented data on the natural immune response against Hla and suggests that the heptameric HlaPSGS is a highly valuable vaccine candidate against S. aureus.


Subject(s)
Bacterial Toxins/chemistry , Bacterial Toxins/immunology , Hemolysin Proteins/chemistry , Hemolysin Proteins/immunology , Molecular Mimicry , Staphylococcal Infections/prevention & control , Staphylococcus aureus , ADAM10 Protein/metabolism , Animals , Bacterial Toxins/administration & dosage , Bacterial Toxins/genetics , Cell Line , Cytotoxins , Epitopes/immunology , Escherichia coli/genetics , Hemolysin Proteins/administration & dosage , Hemolysin Proteins/genetics , Humans , Membrane Proteins/metabolism , Mice , Microscopy, Electron, Transmission , Models, Molecular , Protein Engineering , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Staphylococcal Vaccines/immunology , Staphylococcus aureus/chemistry , Staphylococcus aureus/metabolism , Vaccination
8.
PLoS One ; 11(4): e0153985, 2016.
Article in English | MEDLINE | ID: mdl-27101006

ABSTRACT

We have established an in vitro 3D system which recapitulates the human tracheo-bronchial mucosa comprehensive of the pseudostratified epithelium and the underlying stromal tissue. In particular, we reported that the mature model, entirely constituted of primary cells of human origin, develops key markers proper of the native tissue such as the mucociliary differentiation of the epithelial sheet and the formation of the basement membrane. The infection of the pseudo-tissue with a strain of NonTypeable Haemophilus influenzae results in bacteria association and crossing of the mucus layer leading to an apparent targeting of the stromal space where they release large amounts of vesicles and form macro-structures. In summary, we propose our in vitro model as a reliable and potentially customizable system to study mid/long term host-pathogen processes.


Subject(s)
Haemophilus Infections/physiopathology , Models, Anatomic , Respiratory Mucosa/cytology , Haemophilus Infections/metabolism , Haemophilus influenzae , Humans , In Vitro Techniques , Respiratory Mucosa/virology
9.
J Infect Dis ; 213(4): 516-22, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26401026

ABSTRACT

The adhesion of Streptococcus pneumoniae is a key step during colonization of human respiratory tract mucosae. Here we demonstrate that pneumococcal type I pilus significantly increases the adhesiveness of poorly adhering highly capsulated strains in vitro. Interestingly, preincubation of bacteria with antibodies against the major pilus backbone subunit (RrgB) or the adhesin component (RrgA) impaired pneumococcal association to human epithelial cells. Screening for anti-RrgA monoclonal antibodies specifically affecting the adhesive capacity of S. pneumoniae led to the identification of the monoclonal 11B9/61 antibody, which greatly reduced pilus-dependent cell contact. Proteomic-based epitope mapping of 11B9/61 monoclonal antibody revealed a well-exposed epitope on the D2 domain of RrgA as the target of this functional antibody. The data presented here confirm the importance of pilus I for S. pneumoniae pathogenesis and the potential use of antipilus antibodies to prevent bacterial colonization.


Subject(s)
Antibodies, Bacterial/immunology , Antibodies, Monoclonal/immunology , Bacterial Adhesion/drug effects , Epithelial Cells/microbiology , Fimbriae Proteins/immunology , Fimbriae, Bacterial/immunology , Streptococcus pneumoniae/immunology , Cell Line , Epitope Mapping , Humans , Virulence Factors/immunology
10.
mBio ; 6(6): e01765-15, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26578681

ABSTRACT

UNLABELLED: The ability to adhere and adapt to the human respiratory tract mucosa plays a pivotal role in the pathogenic lifestyle of nontypeable Haemophilus influenzae (NTHi). However, the temporal events associated with a successful colonization have not been fully characterized. In this study, by reconstituting the ciliated human bronchial epithelium in vitro, we monitored the global transcriptional changes in NTHi and infected mucosal epithelium simultaneously for up to 72 h by dual RNA sequencing. The initial stage of colonization was characterized by the binding of NTHi to ciliated cells. Temporal profiling of host mRNA signatures revealed significant dysregulation of the target cell cytoskeleton elicited by bacterial infection, with a profound effect on the intermediate filament network and junctional complexes. In response to environmental stimuli of the host epithelium, NTHi downregulated its central metabolism and increased the expression of transporters, indicating a change in the metabolic regime due to the availability of host substrates. Concurrently, the oxidative environment generated by infected cells instigated bacterial expression of stress-induced defense mechanisms, including the transport of exogenous glutathione and activation of the toxin-antitoxin system. The results of this analysis were validated by those of confocal microscopy, Western blotting, Bio-plex, and real-time quantitative reverse transcription-PCR (qRT-PCR). Notably, as part of our screening for novel signatures of infection, we identified a global profile of noncoding transcripts that are candidate small RNAs (sRNAs) regulated during human host infection in Haemophilus species. Our data, by providing a robust and comprehensive representation of the cross talk between the host and invading pathogen, provides important insights into NTHi pathogenesis and the development of efficacious preventive strategies. IMPORTANCE: Simultaneous monitoring of infection-linked transcriptome alterations in an invading pathogen and its target host cells represents a key strategy for identifying regulatory responses that drive pathogenesis. In this study, we report the progressive events of NTHi colonization in a highly differentiated model of ciliated bronchial epithelium. Genome-wide transcriptome maps of NTHi during infection provided mechanistic insights into bacterial adaptive responses to the host niche, with modulation of the central metabolism as an important signature of the evolving milieu. Our data indicate that infected epithelia respond by substantial alteration of the cytoskeletal network and cytokine repertoire, revealing a dynamic cross talk that is responsible for the onset of inflammation. This work significantly enhances our understanding of the means by which NTHi promotes infection on human mucosae and reveals novel strategies exploited by this important pathogen to cause invasive disease.


Subject(s)
Gene Expression Profiling , Haemophilus influenzae/growth & development , Haemophilus influenzae/genetics , Host-Pathogen Interactions , Respiratory Mucosa/microbiology , Blotting, Western , Humans , Microscopy, Confocal , Molecular Sequence Data , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA , Time Factors
11.
PLoS One ; 10(5): e0127614, 2015.
Article in English | MEDLINE | ID: mdl-25996923

ABSTRACT

Many pathogenic bacteria utilize ADP-ribosylating toxins to modify and impair essential functions of eukaryotic cells. It has been previously reported that Neisseria meningitidis possesses an ADP-ribosyltransferase enzyme, NarE, retaining the capacity to hydrolyse NAD and to transfer ADP-ribose moiety to arginine residues in target acceptor proteins. Here we show that upon internalization into human epithelial cells, NarE gains access to the cytoplasm and, through its ADP-ribosylating activity, targets host cell proteins. Notably, we observed that these events trigger the disruption of the epithelial monolayer integrity and the activation of the apoptotic pathway. Overall, our findings provide, for the first time, evidence for a biological activity of NarE on host cells, suggesting its possible involvement in Neisseria pathogenesis.


Subject(s)
ADP Ribose Transferases/metabolism , Epithelial Cells/metabolism , Epithelial Cells/virology , Neisseria meningitidis/metabolism , Actins/metabolism , Animals , Apoptosis , Endocytosis , Epithelial Cells/pathology , HeLa Cells , Humans , Intracellular Space/metabolism , Mice , Protein Binding , Protein Transport
12.
Mol Cell Proteomics ; 14(8): 2138-49, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26018414

ABSTRACT

Bacterial lipoproteins are attractive vaccine candidates because they represent a major class of cell surface-exposed proteins in many bacteria and are considered as potential pathogen-associated molecular patterns sensed by Toll-like receptors with built-in adjuvanticity. Although Gram-negative lipoproteins have been extensively characterized, little is known about Gram-positive lipoproteins. We isolated from Streptococcus pyogenes a large amount of lipoproteins organized in vesicles. These vesicles were obtained by weakening the bacterial cell wall with a sublethal concentration of penicillin. Lipid and proteomic analysis of the vesicles revealed that they were enriched in phosphatidylglycerol and almost exclusively composed of lipoproteins. In association with lipoproteins, a few hypothetical proteins, penicillin-binding proteins, and several members of the ExPortal, a membrane microdomain responsible for the maturation of secreted proteins, were identified. The typical lipidic moiety was apparently not necessary for lipoprotein insertion in the vesicle bilayer because they were also recovered from the isogenic diacylglyceryl transferase deletion mutant. The vesicles were not able to activate specific Toll-like receptor 2, indicating that lipoproteins organized in these vesicular structures do not act as pathogen-associated molecular patterns. In light of these findings, we propose to name these new structures Lipoprotein-rich Membrane Vesicles.


Subject(s)
Bacterial Proteins/metabolism , Lipoproteins/metabolism , Membrane Microdomains/metabolism , Streptococcus pyogenes/metabolism , Culture Media , HEK293 Cells , Humans , Membrane Microdomains/drug effects , Molecular Weight , Mutation/genetics , Penicillins/pharmacology , Software , Streptococcus pyogenes/drug effects , Toll-Like Receptor 2/metabolism
13.
BMC Microbiol ; 15: 87, 2015 Apr 18.
Article in English | MEDLINE | ID: mdl-25927946

ABSTRACT

BACKGROUND: Non-typeable Haemophilus influenzae (NTHi) is a Gram negative microorganism residing in the human nasopharyngeal mucosa and occasionally causing infections of both middle ear and lower respiratory airways. A broadly protective vaccine against NTHi has been a long-unmet medical need, as the high genetic variability of this bacterium has posed great challenges. RESULTS: In this study, we developed a robust serum bactericidal assay (SBA) to optimize the selection of protective antigens against NTHi. SBA takes advantage of the complement-mediated lysis of bacterial cells and is a key in vitro method for measuring the functional activity of antibodies. As a proof of concept, we assessed the bactericidal activity of antibodies directed against antigens known to elicit a protective response, including protein D used as carrier protein in the Synflorix pneumococcal polysaccharide conjugate vaccine. Prior to SBA screening, the accessibility of antigens to antibodies and the capacity of the latter to induce C3 complement deposition was verified by flow cytometry. Using baby rabbit serum as a source of complement, the proposed assay not only confirmed the bactericidal activity of the antibodies against the selected vaccine candidates, but also showed a significant reproducibility. CONCLUSIONS: Considering the rapidity and cost-effectiveness of this novel SBA protocol, we conclude that it is likely to become an important tool to prove the capability of antibodies directed against recombinant antigens to induce NTHi in vitro killing and to both select new protective vaccine candidates, and predict vaccine efficacy.


Subject(s)
Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Blood Bactericidal Activity , Haemophilus influenzae/immunology , Haemophilus influenzae/physiology , Microbial Viability/drug effects , Animals , Guinea Pigs , Haemophilus influenzae/drug effects , Immunoassay/methods , Mice , Rabbits
14.
Genome Announc ; 3(2)2015 Mar 26.
Article in English | MEDLINE | ID: mdl-25814593

ABSTRACT

Haemophilus influenzae is an important human pathogen involved in invasive disease. Here, we report the whole-genome sequences of 11 nonencapsulated H. influenzae (ncHi) strains isolated from both invasive disease and healthy carriers in Italy. This genomic information will enrich our understanding of the molecular basis of ncHi pathogenesis.

15.
Cell Microbiol ; 17(9): 1365-75, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25801707

ABSTRACT

Translocation of the nasopharyngeal barrier by Neisseria meningitidis occurs via an intracellular microtubule-dependent pathway and represents a crucial step in its pathogenesis. Despite this fact, the interaction of invasive meningococci with host subcellular compartments and the resulting impact on their organization and function have not been investigated. The influence of serogroup B strain MC58 on host cell polarity and intracellular trafficking system was assessed by confocal microscopy visualization of different plasma membrane-associated components (such as E-cadherin, ZO-1 and transferrin receptor) and evaluation of the transferrin uptake and recycling in infected Calu-3 monolayers. Additionally, the association of N. meningitidis with different endosomal compartments was evaluated through the concomitant staining of bacteria and markers specific for Rab11, Rab22a, Rab25 and Rab3 followed by confocal microscopy imaging. Subversion of the host cell architecture and intracellular trafficking system, denoted by mis-targeting of cell plasma membrane components and perturbations of transferrin transport, was shown to occur in response to N. meningitidis infection. Notably, the appearance of all of these events seems to positively correlate with the efficiency of N. meningitidis to cross the epithelial barrier. Our data reveal for the first time that N. meningitidis is able to modulate the host cell architecture and function, which might serve as a strategy of this pathogen for overcoming the nasopharyngeal barrier without affecting the monolayer integrity.


Subject(s)
Cell Polarity , Epithelial Cells/microbiology , Epithelial Cells/physiology , Host-Pathogen Interactions , Neisseria meningitidis, Serogroup B/physiology , Transcytosis , Cell Line , Humans , Microscopy, Confocal
16.
PLoS One ; 10(3): e0117486, 2015.
Article in English | MEDLINE | ID: mdl-25789808

ABSTRACT

SslE is a zinc-metalloprotease involved in the degradation of mucin substrates and recently proposed as a potential vaccine candidate against pathogenic E. coli. In this paper, by exploiting a human in vitro model of mucus-secreting cells, we demonstrated that bacteria expressing SslE have a metabolic benefit which results in an increased growth rate postulating the importance of this antigen in enhancing E. coli fitness. We also observed that SslE expression facilitates E. coli penetration of the mucus favouring bacteria adhesion to host cells. Moreover, we found that SslE-mediated opening of the mucosae contributed to the activation of pro-inflammatory events. Indeed, intestinal cells infected with SslE-secreting bacteria showed an increased production of IL-8 contributing to neutrophil recruitment. The results presented in this paper conclusively designate SslE as an important colonization factor favouring E. coli access to both metabolic substrates and target cells.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/pathogenicity , Intestinal Mucosa/microbiology , Polysaccharide-Lyases/metabolism , Virulence Factors/metabolism , Escherichia coli/enzymology , Humans , Virulence
17.
mBio ; 6(2): e02575, 2015 Feb 24.
Article in English | MEDLINE | ID: mdl-25714719

ABSTRACT

UNLABELLED: LytM proteins belong to a family of bacterial metalloproteases. In Gram-negative bacteria, LytM factors are mainly reported to have a direct effect on cell division by influencing cleavage and remodeling of peptidoglycan. In this study, mining nontypeable Haemophilus influenzae (NTHI) genomes, three highly conserved open reading frames (ORFs) containing a LytM domain were identified, and the proteins encoded by the ORFs were named YebA, EnvC, and NlpD on the basis of their homology with the Escherichia coli proteins. Immunoblotting and confocal analysis showed that while NTHI NlpD is exposed on the bacterial surface, YebA and EnvC reside in the periplasm. NTHI ΔyebA and ΔnlpD deletion mutants revealed an aberrant division phenotype characterized by an altered cell architecture and extensive membrane blebbing. The morphology of the ΔenvC deletion mutant was identical to that of the wild-type strain, but it showed a drastic reduction of periplasmic proteins, including the chaperones HtrA, SurA, and Skp, and an accumulation of ß-barrel-containing outer membrane proteins comprising the autotransporters Hap, IgA serine protease, and HMW2A, as observed by proteomic analysis. These data suggest that EnvC may influence the bacterial surface protein repertoire by facilitating the passage of the periplasmic chaperones through the peptidoglycan layer to the close vicinity of the inner face of the outer membrane. This hypothesis was further corroborated by the fact that an NTHI envC defective strain had an impaired capacity to adhere to epithelial cells and to form biofilm. Notably, this strain also showed a reduced serum resistance. These results suggest that LytM factors are not only important components of cell division but they may also influence NTHI physiology and pathogenesis by affecting membrane composition. IMPORTANCE: Nontypeable Haemophilus influenzae (NTHI) is an opportunistic pathogen that colonizes the human nasopharynx and can cause serious infections in children (acute otitis media) and adults (chronic obstructive pulmonary disease). Several virulence factors are well studied, but the complete scenario of NTHI pathogenesis is still unclear. We identified and characterized three NTHI LytM factors homologous to the Escherichia coli LytM proteins. Although LytM factors are reported to play a crucial role in the cell division process, in NTHI they are also involved in other bacterial functions. In particular, YebA and NlpD are fundamental for membrane stability: indeed, their absence causes an increased release of outer membrane vesicles (OMVs). On the other hand, our data suggest that EnvC could directly or indirectly affect peptidoglycan permeability and consequently, bacterial periplasmic and outer membrane protein distribution. Interestingly, by modulating the surface composition of virulence determinants, EnvC also has an impact on NTHI pathogenesis.


Subject(s)
Cell Division , Cell Membrane/chemistry , Haemophilus influenzae/enzymology , Haemophilus influenzae/physiology , Metalloproteases/metabolism , Bacterial Adhesion , Cell Wall/chemistry , Cells, Cultured , Computational Biology , Epithelial Cells/microbiology , Gene Deletion , Haemophilus influenzae/genetics , Haemophilus influenzae/pathogenicity , Humans , Open Reading Frames , Periplasm/chemistry , Sequence Homology, Amino Acid , Virulence , Virulence Factors
18.
Mol Cell Proteomics ; 14(2): 418-29, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25368410

ABSTRACT

New generation vaccines are in demand to include only the key antigens sufficient to confer protective immunity among the plethora of pathogen molecules. In the last decade, large-scale genomics-based technologies have emerged. Among them, the Reverse Vaccinology approach was successfully applied to the development of an innovative vaccine against Neisseria meningitidis serogroup B, now available on the market with the commercial name BEXSERO® (Novartis Vaccines). The limiting step of such approaches is the number of antigens to be tested in in vivo models. Several laboratories have been trying to refine the original approach in order to get to the identification of the relevant antigens straight from the genome. Here we report a new bioinformatics tool that moves a first step in this direction. The tool has been developed by identifying structural/functional features recurring in known bacterial protective antigens, the so called "Protectome space," and using such "protective signatures" for protective antigen discovery. In particular, we applied this new approach to Staphylococcus aureus and Group B Streptococcus and we show that not only already known protective antigens were re-discovered, but also two new protective antigens were identified.


Subject(s)
Bacterial Vaccines/immunology , Computational Biology/methods , Proteome/immunology , 5'-Nucleotidase/metabolism , Animals , Bacterial Proteins/immunology , Cell Line , Disease Models, Animal , Female , Mice , Neisseria meningitidis, Serogroup B/immunology , Protein Sorting Signals , Reproducibility of Results , Staphylococcus aureus/immunology , Streptococcus agalactiae/immunology
19.
PLoS Pathog ; 10(5): e1004124, 2014 May.
Article in English | MEDLINE | ID: mdl-24809621

ABSTRACT

SslE, the Secreted and surface-associated lipoprotein from Escherichia coli, has recently been associated to the M60-like extracellular zinc-metalloprotease sub-family which is implicated in glycan recognition and processing. SslE can be divided into two main variants and we recently proposed it as a potential vaccine candidate. By applying a number of in vitro bioassays and comparing wild type, knockout mutant and complemented strains, we have now demonstrated that SslE specifically contributes to degradation of mucin substrates, typically present in the intestine and bladder. Mutation of the zinc metallopeptidase motif of SslE dramatically impaired E. coli mucinase activity, confirming the specificity of the phenotype observed. Moreover, antibodies raised against variant I SslE, cloned from strain IHE3034 (SslEIHE3034), are able to inhibit translocation of E. coli strains expressing different variants through a mucin-based matrix, suggesting that SslE induces cross-reactive functional antibodies that affect the metallopeptidase activity. To test this hypothesis, we used well-established animal models and demonstrated that immunization with SslEIHE3034 significantly reduced gut, kidney and spleen colonization by strains producing variant II SslE and belonging to different pathotypes. Taken together, these data strongly support the importance of SslE in E. coli colonization of mucosal surfaces and reinforce the use of this antigen as a component of a broadly protective vaccine against pathogenic E. coli species.


Subject(s)
Antibodies, Bacterial/pharmacology , Antibody Formation , Escherichia coli Infections , Escherichia coli Proteins/immunology , Polysaccharide-Lyases/antagonists & inhibitors , Virulence Factors/immunology , Animals , Animals, Outbred Strains , Antibodies, Bacterial/metabolism , Cells, Cultured , Enteropathogenic Escherichia coli/growth & development , Enteropathogenic Escherichia coli/immunology , Enteropathogenic Escherichia coli/metabolism , Enzyme Activation/drug effects , Escherichia coli/growth & development , Escherichia coli/immunology , Escherichia coli/metabolism , Escherichia coli Infections/immunology , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/metabolism , Female , Intestines/microbiology , Mice , Mice, Inbred CBA , Polysaccharide-Lyases/immunology , Polysaccharide-Lyases/metabolism , Virulence Factors/antagonists & inhibitors , Virulence Factors/metabolism
20.
Proc Natl Acad Sci U S A ; 111(14): 5439-44, 2014 Apr 08.
Article in English | MEDLINE | ID: mdl-24706866

ABSTRACT

One of the main hurdles for the development of an effective and broadly protective vaccine against nonencapsulated isolates of Haemophilus influenzae (NTHi) lies in the genetic diversity of the species, which renders extremely difficult the identification of cross-protective candidate antigens. To assess whether a population structure of NTHi could be defined, we performed genome sequencing of a collection of diverse clinical isolates representative of both carriage and disease and of the diversity of the natural population. Analysis of the distribution of polymorphic sites in the core genome and of the composition of the accessory genome defined distinct evolutionary clades and supported a predominantly clonal evolution of NTHi, with the majority of genetic information transmitted vertically within lineages. A correlation between the population structure and the presence of selected surface-associated proteins and lipooligosaccharide structure, known to contribute to virulence, was found. This high-resolution, genome-based population structure of NTHi provides the foundation to obtain a better understanding, of NTHi adaptation to the host as well as its commensal and virulence behavior, that could facilitate intervention strategies against disease caused by this important human pathogen.


Subject(s)
Carrier State , Genome, Bacterial , Haemophilus influenzae/isolation & purification , Haemophilus influenzae/classification , Haemophilus influenzae/genetics , Humans , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...