Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37489135

ABSTRACT

Although the intestinal tract is a major site of reactive oxygen species (ROS) generation, the mechanisms by which antioxidant defense in gut T cells contribute to intestinal homeostasis are currently unknown. Here we show, using T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that the ensuing loss of glutathione (GSH) impairs the production of gut-protective IL-22 by Th17 cells within the lamina propria. Although Gclc ablation does not affect T cell cytokine secretion in the gut of mice at steady-state, infection with C. rodentium increases ROS, inhibits mitochondrial gene expression and mitochondrial function in Gclc-deficient Th17 cells. These mitochondrial deficits affect the PI3K/AKT/mTOR pathway, leading to reduced phosphorylation of the translation repressor 4E-BP1. As a consequence, the initiation of translation is restricted, resulting in decreased protein synthesis of IL-22. Loss of IL-22 results in poor bacterial clearance, enhanced intestinal damage, and high mortality. ROS-scavenging, reconstitution of IL-22 expression or IL-22 supplementation in vivo prevent the appearance of these pathologies. Our results demonstrate the existence of a previously unappreciated role for Th17 cell-intrinsic GSH coupling to promote mitochondrial function, IL-22 translation and signaling. These data reveal an axis that is essential for maintaining the integrity of the intestinal barrier and protecting it from damage caused by gastrointestinal infection.

2.
Cell Rep ; 42(3): 112153, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36848289

ABSTRACT

Pyruvate dehydrogenase (PDH) is the central enzyme connecting glycolysis and the tricarboxylic acid (TCA) cycle. The importance of PDH function in T helper 17 (Th17) cells still remains to be studied. Here, we show that PDH is essential for the generation of a glucose-derived citrate pool needed for Th17 cell proliferation, survival, and effector function. In vivo, mice harboring a T cell-specific deletion of PDH are less susceptible to developing experimental autoimmune encephalomyelitis. Mechanistically, the absence of PDH in Th17 cells increases glutaminolysis, glycolysis, and lipid uptake in a mammalian target of rapamycin (mTOR)-dependent manner. However, cellular citrate remains critically low in mutant Th17 cells, which interferes with oxidative phosphorylation (OXPHOS), lipid synthesis, and histone acetylation, crucial for transcription of Th17 signature genes. Increasing cellular citrate in PDH-deficient Th17 cells restores their metabolism and function, identifying a metabolic feedback loop within the central carbon metabolism that may offer possibilities for therapeutically targeting Th17 cell-driven autoimmunity.


Subject(s)
Citric Acid , Th17 Cells , Mice , Animals , Citrates , Oxidoreductases , Lipids , Pyruvates , Mammals
3.
Trends Immunol ; 44(3): 231-244, 2023 03.
Article in English | MEDLINE | ID: mdl-36774330

ABSTRACT

T cell subsets adapt and rewire their metabolism according to their functions and surrounding microenvironment. Whereas naive T cells rely on mitochondrial metabolic pathways characterized by low nutrient requirements, effector T cells induce kinetically faster pathways to generate the biomass and energy needed for proliferation and cytokine production. Recent findings support the concept that alterations in metabolism also affect the epigenetics of T cells. In this review we discuss the connections between T cell metabolism and epigenetic changes such as histone post-translational modifications (PTMs) and DNA methylation, as well as the 'extra-metabolic' roles of metabolic enzymes and molecules. These findings collectively point to a new group of potential therapeutic targets for the treatment of T cell-dependent autoimmune diseases and cancers.


Subject(s)
Epigenesis, Genetic , Neoplasms , Humans , Histones/metabolism , DNA Methylation , Neoplasms/metabolism , Protein Processing, Post-Translational , T-Lymphocytes/metabolism , Tumor Microenvironment
4.
Nat Commun ; 13(1): 2699, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35577770

ABSTRACT

Metastasis is the most common cause of death in cancer patients. Canonical drugs target mainly the proliferative capacity of cancer cells, which leaves slow-proliferating, persistent cancer cells unaffected. Metabolic determinants that contribute to growth-independent functions are still poorly understood. Here we show that antifolate treatment results in an uncoupled and autarkic mitochondrial one-carbon (1C) metabolism during cytosolic 1C metabolism impairment. Interestingly, antifolate dependent growth-arrest does not correlate with decreased migration capacity. Therefore, using methotrexate as a tool compound allows us to disentangle proliferation and migration to profile the metabolic phenotype of migrating cells. We observe that increased serine de novo synthesis (SSP) supports mitochondrial serine catabolism and inhibition of SSP using the competitive PHGDH-inhibitor BI-4916 reduces cancer cell migration. Furthermore, we show that sole inhibition of mitochondrial serine catabolism does not affect primary breast tumor growth but strongly inhibits pulmonary metastasis. We conclude that mitochondrial 1C metabolism, despite being dispensable for proliferative capacities, confers an advantage to cancer cells by supporting their motility potential.


Subject(s)
Breast Neoplasms , Folic Acid Antagonists , Breast Neoplasms/metabolism , Carbon Cycle , Cell Line, Tumor , Cell Movement , Cell Proliferation , Female , Humans , Mitochondria/metabolism , Serine/metabolism
5.
Nat Commun ; 13(1): 1789, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35379825

ABSTRACT

The metabolic principles underlying the differences between follicular and marginal zone B cells (FoB and MZB, respectively) are not well understood. Here we show, by studying mice with B cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that glutathione synthesis affects homeostasis and differentiation of MZB to a larger extent than FoB, while glutathione-dependent redox control contributes to the metabolic dependencies of FoB. Specifically, Gclc ablation in FoB induces metabolic features of wild-type MZB such as increased ATP levels, glucose metabolism, mTOR activation, and protein synthesis. Furthermore, Gclc-deficient FoB have a block in the mitochondrial electron transport chain (ETC) due to diminished complex I and II activity and thereby accumulate the tricarboxylic acid cycle metabolite succinate. Finally, Gclc deficiency hampers FoB activation and antibody responses in vitro and in vivo, and induces susceptibility to viral infections. Our results thus suggest that Gclc is required to ensure the development of MZB, the mitochondrial ETC integrity in FoB, and the efficacy of antiviral humoral immunity.


Subject(s)
Glutamate-Cysteine Ligase , Lymphoid Tissue , Animals , B-Lymphocytes , Glutathione/metabolism , Lymphoid Tissue/metabolism , Mice , Oxidation-Reduction
6.
Front Immunol ; 13: 831680, 2022.
Article in English | MEDLINE | ID: mdl-35265081

ABSTRACT

TNF-related apoptosis inducing ligand (TRAIL) is expressed on cytotoxic T lymphocytes (CTLs) and TRAIL is linked to progression of diabetes. However, the impact of high glucose on TRAIL expression and its related killing function in CTLs still remains largely elusive. Here, we report that TRAIL is substantially up-regulated in CTLs in environments with high glucose (HG) both in vitro and in vivo. Non-mitochondrial reactive oxygen species, NFκB and PI3K/Akt are essential in HG-induced TRAIL upregulation in CTLs. TRAILhigh CTLs induce apoptosis of pancreatic beta cell line 1.4E7. Treatment with metformin and vitamin D reduces HG-enhanced expression of TRAIL in CTLs and coherently protects 1.4E7 cells from TRAIL-mediated apoptosis. Our work suggests that HG-induced TRAILhigh CTLs might contribute to the destruction of pancreatic beta cells in a hyperglycemia condition.


Subject(s)
T-Lymphocytes, Cytotoxic , TNF-Related Apoptosis-Inducing Ligand , Glucose/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , T-Lymphocytes, Cytotoxic/metabolism , TNF-Related Apoptosis-Inducing Ligand/metabolism
7.
Front Immunol ; 12: 689337, 2021.
Article in English | MEDLINE | ID: mdl-34248978

ABSTRACT

Cytotoxic T lymphocytes (CTLs) are key players to eliminate tumorigenic or pathogen-infected cells using lytic granules (LG) and Fas ligand (FasL) pathways. Depletion of glucose leads to severely impaired cytotoxic function of CTLs. However, the impact of excessive glucose on CTL functions still remains largely unknown. Here we used primary human CD8+ T cells, which were stimulated by CD3/CD28 beads and cultured in medium either containing high glucose (HG, 25 mM) or normal glucose (NG, 5.6 mM). We found that in HG-CTLs, glucose uptake and glycolysis were enhanced, whereas proliferation remained unaltered. Furthermore, CTLs cultured in HG exhibited an enhanced CTL killing efficiency compared to their counterparts in NG. Unexpectedly, expression of cytotoxic proteins (perforin, granzyme A, granzyme B and FasL), LG release, cytokine/cytotoxic protein release and CTL migration remained unchanged in HG-cultured CTLs. Interestingly, additional extracellular Ca2+ diminished HG-enhanced CTL killing function. Our findings suggest that in an environment with excessive glucose, CTLs could eliminate target cells more efficiently, at least for a certain period of time, in a Ca2+-dependent manner.


Subject(s)
Glucose/pharmacology , T-Lymphocytes, Cytotoxic/drug effects , Animals , Cells, Cultured , Glycolysis/drug effects , Humans , Male , Mice, Inbred C57BL , T-Lymphocytes, Cytotoxic/metabolism
8.
Eur J Immunol ; 50(11): 1626-1642, 2020 11.
Article in English | MEDLINE | ID: mdl-33067808

ABSTRACT

Regulatory T cells (Tregs) are critical for peripheral immune tolerance and homeostasis, and altered Treg behavior is involved in many pathologies, including autoimmunity and cancer. The expression of the transcription factor FoxP3 in Tregs is fundamental to maintaining their stability and immunosuppressive function. Recent studies have highlighted the crucial role that metabolic reprogramming plays in controlling Treg plasticity, stability, and function. In this review, we summarize how the availability and use of various nutrients and metabolites influence Treg metabolic pathways and activity. We also discuss how Treg-intrinsic metabolic programs define and shape their differentiation, FoxP3 expression, and suppressive capacity. Lastly, we explore how manipulating the regulation of Treg metabolism might be exploited in different disease settings to achieve novel immunotherapies.


Subject(s)
Autoimmune Diseases/immunology , Autoimmunity/immunology , Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Cell Differentiation/immunology , Forkhead Transcription Factors/immunology , Humans , Immune Tolerance/immunology , Immunotherapy/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...