Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
J Hered ; 115(2): 221-229, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38305464

ABSTRACT

Island oak (Quercus tomentella) is a rare relictual island tree species that exists only on six islands off the coast of California and Mexico, but was once widespread throughout mainland California. Currently, this species is endangered by threats such as non-native plants, grazing animals, and human removal. Efforts for conservation and restoration of island oak currently underway could benefit from information about its range-wide genetic structure and evolutionary history. Here we present a high-quality genome assembly for Q. tomentella, assembled using PacBio HiFi and Omni-C sequencing, developed as part of the California Conservation Genomics Project (CCGP). The resulting assembly has a length of 781 Mb, with a contig N50 of 22.0 Mb and a scaffold N50 of 63.4 Mb. This genome assembly will provide a resource for genomics-informed conservation of this rare oak species. Additionally, this reference genome will be the first one available for a species in Quercus section Protobalanus, a unique oak clade present only in western North America.


Subject(s)
Quercus , Trees , Animals , Humans , Trees/genetics , Genomics , Mexico , North America
2.
J Hered ; 114(5): 570-579, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37335172

ABSTRACT

Juglans californica, California walnut, is a vulnerable small tree that is locally abundant but restricted to woodland and chaparral habitats of Southern California threatened by urbanization and land use change. This species is the dominant species in a unique woodland ecosystem in California. It is one of 2 endemic California walnut species (family Juglandaceae). The other species, Northern California black walnut (J. hindsii), has been suggested controversially to be a variety of J. californica. Here, we report a new, chromosome-level assembly of J. californica as part of the California Conservation Genomics Project (CCGP). Consistent with the CCGP common methodology across ~150 genomes, we used Pacific Biosciences HiFi long reads and Omni-C chromatin-proximity sequencing technology to produce a de novo assembled genome. The assembly comprises 137 scaffolds spanning 551,065,703 bp, has a contig N50 of 30 Mb, a scaffold N50 of 37 Mb, and BUSCO complete score of 98.9%. Additionally, the mitochondrial genome has 701,569 bp. In addition, we compare this genome with other existing high-quality Juglans and Quercus genomes, which are in the same order (Fagales) and show relatively high synteny within the Juglans genomes. Future work will utilize the J. californica genome to determine its relationship with the Northern California walnut and assess the extent to which these 2 endemic trees might be at risk from fragmentation and/or climate warming.


Subject(s)
Juglans , Juglans/genetics , Ecosystem , Genome , Genomics/methods , California
4.
J Hered ; 113(6): 577-588, 2022 11 30.
Article in English | MEDLINE | ID: mdl-35395669

ABSTRACT

The California Conservation Genomics Project (CCGP) is a unique, critically important step forward in the use of comprehensive landscape genetic data to modernize natural resource management at a regional scale. We describe the CCGP, including all aspects of project administration, data collection, current progress, and future challenges. The CCGP will generate, analyze, and curate a single high-quality reference genome and 100-150 resequenced genomes for each of 153 species projects (representing 235 individual species) that span the ecological and phylogenetic breadth of California's marine, freshwater, and terrestrial ecosystems. The resulting portfolio of roughly 20 000 resequenced genomes will be analyzed with identical informatic and landscape genomic pipelines, providing a comprehensive overview of hotspots of within-species genomic diversity, potential and realized corridors connecting these hotspots, regions of reduced diversity requiring genetic rescue, and the distribution of variation critical for rapid climate adaptation. After 2 years of concerted effort, full funding ($12M USD) has been secured, species identified, and funds distributed to 68 laboratories and 114 investigators drawn from all 10 University of California campuses. The remaining phases of the CCGP include completion of data collection and analyses, and delivery of the resulting genomic data and inferences to state and federal regulatory agencies to help stabilize species declines. The aspirational goals of the CCGP are to identify geographic regions that are critical to long-term preservation of California biodiversity, prioritize those regions based on defensible genomic criteria, and provide foundational knowledge that informs management strategies at both the individual species and ecosystem levels.


Subject(s)
Biodiversity , Ecosystem , Phylogeny , Genomics , Fresh Water , California , Conservation of Natural Resources
5.
Nat Commun ; 13(1): 2047, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440538

ABSTRACT

The genus Quercus, which emerged ∼55 million years ago during globally warm temperatures, diversified into ∼450 extant species. We present a high-quality de novo genome assembly of a California endemic oak, Quercus lobata, revealing features consistent with oak evolutionary success. Effective population size remained large throughout history despite declining since early Miocene. Analysis of 39,373 mapped protein-coding genes outlined copious duplications consistent with genetic and phenotypic diversity, both by retention of genes created during the ancient γ whole genome hexaploid duplication event and by tandem duplication within families, including numerous resistance genes and a very large block of duplicated DUF247 genes, which have been found to be associated with self-incompatibility in grasses. An additional surprising finding is that subcontext-specific patterns of DNA methylation associated with transposable elements reveal broadly-distributed heterochromatin in intergenic regions, similar to grasses. Collectively, these features promote genetic and phenotypic variation that would facilitate adaptability to changing environments.


Subject(s)
Quercus , Biological Evolution , DNA Methylation/genetics , Epigenome , Evolution, Molecular , Humans , Quercus/genetics
6.
Ann Bot ; 129(2): 231-245, 2022 01 28.
Article in English | MEDLINE | ID: mdl-34893791

ABSTRACT

BACKGROUND AND AIMS: Contemporary patterns of genetic admixture reflect imprints of both ancient and recent gene flow, which can provide us with valuable information on hybridization history in response to palaeoclimate change. Here, we examine the relationships between present admixture patterns and past climatic niche suitability of two East Asian Cerris oaks (Quercus acutissima and Q. chenii) to test the hypothesis that the mid-Pliocene warm climate promoted while the Pleistocene cool climate limited hybridization among local closely related taxa. METHODS: We analyse genetic variation at seven nuclear microsatellites (1111 individuals) and three chloroplast intergenic spacers (576 individuals) to determine the present admixture pattern and ancient hybridization history. We apply an information-theoretic model selection approach to explore the associations of genetic admixture degree with past climatic niche suitability at multiple spatial scales. KEY RESULTS: More than 70 % of the hybrids determined by Bayesian clustering analysis and more than 90 % of the individuals with locally shared chloroplast haplotypes are concentrated within a mid-Pliocene contact zone between ~30°N and 35°N. Climatic niche suitabilities for Q. chenii during the mid-Pliocene Warm Period [mPWP, ~3.264-3.025 million years ago (mya)] and during the Last Glacial Maximum (LGM, ~0.022 mya) best explain the admixture patterns across all Q. acutissima populations and across those within the ancient contact zone, respectively. CONCLUSIONS: Our results highlight that palaeoclimate change shapes present admixture patterns by influencing the extent of historical range overlap. Specifically, the mid-Pliocene warm climate promoted ancient contact, allowing widespread hybridization throughout central China. In contrast, the Pleistocene cool climate caused the local extinction of Q. chenii, reducing the probability of interspecific gene flow in most areas except those sites having a high level of ecological stability.


Subject(s)
Quercus , Bayes Theorem , China , Gene Flow , Genetic Variation , Hybridization, Genetic , Microsatellite Repeats/genetics , Phylogeny , Quercus/genetics
7.
J Hered ; 112(7): 663-670, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34508641

ABSTRACT

Ancient introgression can be an important source of genetic variation that shapes the evolution and diversification of many taxa. Here, we estimate the timing, direction, and extent of gene flow between two distantly related oak species in the same section (Quercus sect. Quercus). We estimated these demographic events using genotyping by sequencing data, which generated 25 702 single nucleotide polymorphisms for 24 individuals of California scrub oak (Quercus berberidifolia) and 23 individuals of Engelmann oak (Quercus engelmannii). We tested several scenarios involving gene flow between these species using the diffusion approximation-based population genetic inference framework and model-testing approach of the Python package DaDi. We found that the most likely demographic scenario includes a bottleneck in Q. engelmannii that coincides with asymmetric gene flow from Q. berberidifolia into Q. engelmannii. Given that the timing of this gene flow coincides with the advent of a Mediterranean-type climate in the California Floristic Province, we propose that changing precipitation patterns and seasonality may have favored the introgression of climate-associated genes from the endemic into the non-endemic California oak.


Subject(s)
Quercus , Climate , Gene Flow , Genetics, Population , Humans , Quercus/genetics
8.
Mol Ecol ; 30(2): 406-423, 2021 01.
Article in English | MEDLINE | ID: mdl-33179370

ABSTRACT

Understanding how the environment shapes genetic variation provides critical insight about the evolution of local adaptation in natural populations. At multiple spatial scales and multiple geographic contexts within a single species, such information could address a number of fundamental questions about the scale of local adaptation and whether or not the same loci are involved at different spatial scales or geographic contexts. We used landscape genomic approaches from three local elevational transects and rangewide sampling to (a) identify genetic variation underlying local adaptation to environmental gradients in the California endemic oak, Quercus lobata; (b) examine whether putatively adaptive SNPs show signatures of selection at multiple spatial scales; and (c) map putatively adaptive variation to assess the scale and pattern of local adaptation. Of over 10 k single-nucleotide polymorphisms (SNPs) generated with genotyping-by-sequencing, we found signatures of natural selection by climate or local environment at over 600 SNPs (536 loci), some at multiple spatial scales across multiple analyses. Candidate SNPs identified with gene-environment tests (LFMM) at the rangewide scale also showed elevated associations with climate variables compared to the background at both rangewide and elevational transect scales with gradient forest analysis. Some loci overlap with those detected in other oak species, raising the question of whether the same loci might be involved in local climate adaptation in different congeneric species that inhabit different geographic contexts. Mapping landscape patterns of adaptive versus background genetic variation identified regions of marked local adaptation and suggests nonlinear association of candidate SNPs and environmental variables. Taken together, our results offer robust evidence for novel candidate genes for local climate adaptation at multiple spatial scales.


Subject(s)
Quercus , Adaptation, Physiological/genetics , Climate , Genetics, Population , Genomics , Polymorphism, Single Nucleotide/genetics , Quercus/genetics , Selection, Genetic
10.
Int J STEM Educ ; 7(1): 32, 2020.
Article in English | MEDLINE | ID: mdl-32647597

ABSTRACT

BACKGROUND: As higher education institutions strive to effectively support an increasingly diverse student body, they will be called upon to provide their faculty with tools to teach more inclusively, especially in science, technology, engineering, and mathematics (STEM) classrooms where recruitment and retention of students from underrepresented and disadvantaged groups present long-standing challenges. Pedagogical training approaches to creating inclusive classrooms involve interventions that raise awareness of student and instructor social identities and explore barriers to learning, such as implicit bias, microaggressions, stereotype threat, and fixed mindset. Such efforts should focus on embracing diversity as an asset leveraged to benefit all students in their learning. In this paper, we describe the impact of multiday, off-campus immersion workshops designed to impart faculty with these tools. Based on analysis of workshop participant data, we report the resulting changes in faculty knowledge of factors affecting classroom climate and student success in STEM, attitudes about students, and motivation to adopt new teaching practices aimed at fostering equitable and culturally responsive learning environments. RESULTS: Key findings indicate that attendees (1) increased their knowledge of social identities and the barriers to learning in STEM classrooms, particularly those faced by students from underrepresented groups in STEM or socioeconomically challenged backgrounds; (2) changed their attitudes about students' abilities as science majors, shifting away from a fixed-mindset perspective in which characteristics, such as intelligence, are perceived as innate and unalterable; and (3) modified their teaching approaches to promote inclusivity and cultural responsiveness. CONCLUSION: Faculty members, who are linchpins in the evolution of college classrooms into settings that provide students with equitable opportunities to succeed academically in STEM, can benefit from participating in immersion workshops structured to support their awareness of issues affecting classroom culture related to race/ethnicity, LGBTQ status, religious affiliation, ability, socioeconomic status, and other social identities that contribute to disparities in STEM achievement and persistence.

11.
G3 (Bethesda) ; 10(3): 1019-1028, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31941723

ABSTRACT

Epigenetic modifications such as DNA methylation, where methyl groups are added to cytosine base pairs, have the potential to impact phenotypic variation and gene expression, and could influence plant response to changing environments. One way to test this impact is through the application of chemical demethylation agents, such as 5-Azacytidine, which inhibit DNA methylation and lead to a partial reduction in DNA methylation across the genome. In this study, we treated 5-month-old seedlings of the tree, Quercus lobata, with foliar application of 5-Azacytidine to test whether a reduction in genome-wide methylation would cause differential gene expression and change phenotypic development. First, we demonstrate that demethylation treatment led to 3-6% absolute reductions and 6.7-43.2% relative reductions in genome-wide methylation across CG, CHG, and CHH sequence contexts, with CHH showing the strongest relative reduction. Seedlings treated with 5-Azacytidine showed a substantial reduction in new growth, which was less than half that of control seedlings. We tested whether this result could be due to impact of the treatment on the soil microbiome and found minimal differences in the soil microbiome between two groups, although with limited sample size. We found no significant differences in leaf fluctuating asymmetry (i.e., deviations from bilateral symmetry), which has been found in other studies. Nonetheless, treated seedlings showed differential expression of a total of 23 genes. Overall, this study provides initial evidence that DNA methylation is involved in gene expression and phenotypic variation in seedlings and suggests that removal of DNA methylation affects plant development.


Subject(s)
DNA Demethylation , Gene Expression Regulation, Plant , Quercus/growth & development , Quercus/genetics , Azacitidine/pharmacology , DNA Demethylation/drug effects , Gene Expression Regulation, Plant/drug effects , Microbiota/drug effects , Seedlings/genetics , Seedlings/growth & development , Soil Microbiology
12.
New Phytol ; 226(4): 1198-1212, 2020 05.
Article in English | MEDLINE | ID: mdl-31609470

ABSTRACT

The tree of life is highly reticulate, with the history of population divergence emerging from populations of gene phylogenies that reflect histories of introgression, lineage sorting and divergence. In this study, we investigate global patterns of oak diversity and test the hypothesis that there are regions of the oak genome that are broadly informative about phylogeny. We utilize fossil data and restriction-site associated DNA sequencing (RAD-seq) for 632 individuals representing nearly 250 Quercus species to infer a time-calibrated phylogeny of the world's oaks. We use a reversible-jump Markov chain Monte Carlo method to reconstruct shifts in lineage diversification rates, accounting for among-clade sampling biases. We then map the > 20 000 RAD-seq loci back to an annotated oak genome and investigate genomic distribution of introgression and phylogenetic support across the phylogeny. Oak lineages have diversified among geographic regions, followed by ecological divergence within regions, in the Americas and Eurasia. Roughly 60% of oak diversity traces back to four clades that experienced increases in net diversification, probably in response to climatic transitions or ecological opportunity. The strong support for the phylogeny contrasts with high genomic heterogeneity in phylogenetic signal and introgression. Oaks are phylogenomic mosaics, and their diversity may in fact depend on the gene flow that shapes the oak genome.


Subject(s)
Quercus , Gene Flow , Genomics , Phylogeny , Quercus/genetics , Sequence Analysis, DNA
13.
Proc Natl Acad Sci U S A ; 116(50): 25179-25185, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31767740

ABSTRACT

Climate change over the next century is predicted to cause widespread maladaptation in natural systems. This prediction, as well as many sustainable management and conservation practices, assumes that species are adapted to their current climate. However, this assumption is rarely tested. Using a large-scale common garden experiment combined with genome-wide sequencing, we found that valley oak (Quercus lobata), a foundational tree species in California ecosystems, showed a signature of adaptational lag to temperature, with fastest growth rates occurring at cooler temperatures than populations are currently experiencing. Future warming under realistic emissions scenarios was predicted to lead to further maladaptation to temperature and reduction in growth rates for valley oak. We then identified genotypes predicted to grow relatively fast under warmer temperatures and demonstrated that selecting seed sources based on their genotype has the potential to mitigate predicted negative consequences of future climate warming on growth rates in valley oak. These results illustrate that the belief of local adaptation underlying many management and conservation practices, such as using local seed sources for restoration, may not hold for some species. If contemporary adaptational lag is commonplace, we will need new approaches to help alleviate predicted negative consequences of climate warming on natural systems. We present one such approach, "genome-informed assisted gene flow," which optimally matches individuals to future climates based on genotype-phenotype-environment associations.


Subject(s)
Adaptation, Physiological , Gene Flow , Genome, Plant , Quercus/genetics , California , Climate Change , Ecosystem , Genotype , Quercus/physiology , Temperature
14.
Mol Ecol ; 28(24): 5248-5264, 2019 12.
Article in English | MEDLINE | ID: mdl-31652373

ABSTRACT

Drought is a major stress for plants, creating a strong selection pressure for traits that enable plant growth and survival in dry environments. Many drought responses are conserved species-wide responses, while others vary among populations distributed across heterogeneous environments. We tested how six populations of the widely distributed California valley oak (Quercus lobata) sampled from contrasting climates would differ in their response to soil drying relative to well-watered controls in a common environment by measuring ecophysiological traits in 93 individuals and gene expression (RNA-seq) in 42 individuals. Populations did not differ in their adjustment of turgor loss point during soil drying, suggesting a generalized species-wide response. Differential expression analysis identified 689 genes with a common response to treatment across populations and 470 genes with population-specific responses. Weighted gene co-expression network analysis (WGCNA) identified groups of genes with similar expression patterns that may be regulated together (gene modules). Several gene modules responded differently to water stress among populations, suggesting regional differences in gene network regulation. Populations from sites with a high mean annual temperature responded to the imposed water stress with significantly greater changes in gene module expression, indicating that these populations may be locally adapted to respond to drought. We propose that this variation among valley oak populations provides a mechanism for differential tolerance to the increasingly frequent and severe droughts in California.


Subject(s)
Adaptation, Physiological/genetics , Quercus/genetics , Seedlings/genetics , Stress, Physiological/genetics , California , Climate , Droughts , Gene Regulatory Networks/genetics , Hot Temperature , Quercus/growth & development , Soil , Water
15.
Am J Bot ; 106(6): 864-878, 2019 06.
Article in English | MEDLINE | ID: mdl-31216071

ABSTRACT

PREMISE: In plant groups with limited intrinsic barriers to gene flow, it is thought that environmental conditions can modulate interspecific genetic exchange. Oaks are known for limited barriers to gene flow among closely related species. Here, we use Quercus as a living laboratory in which to pursue a fundamental question in plant evolution: Do environmental gradients restrict or promote genetic exchange between species? METHODS: We focused on two North American oaks, the rare Quercus dumosa and the widespread Q. berberidifolia. We sampled intensively along a contact zone in California, USA. We sequenced restriction site-associated DNA markers and measured vegetative phenotype. We tested for genetic exchange, the association with climate, and the effect on phenotype. RESULTS: There is evidence for genetic exchange between the species. Admixed plants are found in areas of intermediate climate, while less admixed plants are found at the extremes of the climatic gradient. Genetic and phenotypic patterns are out of phase in the contact zone; some plants display the phenotype of one species but are genetically associated with another. CONCLUSIONS: Our results support the hypothesis that a strong climatic gradient can promote genetic exchange between species. The overall weak correlation between genotype and phenotype in the contact zone between the species suggests that genetic exchange can lead to the breakdown of trait combinations used to define species. This incongruency predicts ongoing problems for conservation of Q. dumosa, with implications for conservation of other oaks.


Subject(s)
Climate , Gene Flow , Quercus/genetics , California , Genetic Markers/genetics , Hybridization, Genetic
16.
Evol Appl ; 11(10): 1842-1858, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30459833

ABSTRACT

Local adaptation is a critical evolutionary process that allows plants to grow better in their local compared to non-native habitat and results in species-wide geographic patterns of adaptive genetic variation. For forest tree species with a long generation time, this spatial genetic heterogeneity can shape the ability of trees to respond to rapid climate change. Here, we identify genomic variation that may confer local environmental adaptations and then predict the extent of adaptive mismatch under future climate as a tool for forest restoration or management of the widely distributed high-elevation oak species Quercus rugosa in Mexico. Using genotyping by sequencing, we identified 5,354 single nucleotide polymorphisms (SNPs) genotyped from 103 individuals across 17 sites in the Trans-Mexican Volcanic Belt, and, after controlling for neutral genetic structure, we detected 74 F ST outlier SNPs and 97 SNPs associated with climate variation. Then, we deployed a nonlinear multivariate model, Gradient Forests, to map turnover in allele frequencies along environmental gradients and predict areas most sensitive to climate change. We found that spatial patterns of genetic variation were most strongly associated with precipitation seasonality and geographic distance. We identified regions of contemporary genetic and climatic similarities and predicted regions where future populations of Q. rugosa might be at risk due to high expected rate of climate change. Our findings provide preliminary details for future management strategies of Q. rugosa in Mexico and also illustrate how a landscape genomic approach can provide a useful tool for conservation and resource management strategies.

17.
BMC Genet ; 19(1): 88, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30285631

ABSTRACT

BACKGROUND: Hybridization and introgression are common phenomena among oak species. These processes can be beneficial by introducing favorable genetic variants across species (adaptive introgression). Given that drought is an important stress, impacting physiological and morphological variation and limiting distributions, our goal was to identify drought-related genes that might exhibit patterns of introgression influenced by natural selection. Using RNAseq, we sequenced whole transcriptomes of 24 individuals from three oaks in southern California: (Quercus engelmannii, Quercus berberidifolia, Quercus cornelius-mulleri) and identified genetic variants to estimate admixture rates of all variants and those in drought genes. RESULTS: We found 398,042 variants across all loci and 4352 variants in 139 drought candidate genes. STRUCTURE analysis of all variants revealed the majority of our samples were assignable to a single species, but with several highly admixed individuals. When using drought-associated variants, the same individuals exhibited less admixture and their allele frequencies were more polarized between Engelmann and scrub oaks than when using the total gene set. These findings are consistent with the hypothesis that selection may act differently on functional genes, such as drought-associated genes, and point to candidate genes that are suggestive of divergent selection among species maintaining adaptive differences. For example, the drought genes that showed the strongest bias against engelmannii-fixed oak variants in scrub oaks were related to sugar transporter, coumarate-coA ligases, glutathione S-conjugation, and stress response. CONCLUSION: This pilot study illustrates that whole transcriptomes of individuals will provide useful data for identifying functional genes that contribute to adaptive divergence among hybridizing species.


Subject(s)
Droughts , Gene Transfer, Horizontal , Genes, Plant , Polymorphism, Genetic , Quercus/genetics , Stress, Physiological , Evolution, Molecular , Gene Expression Profiling , Quercus/physiology , Sequence Analysis, RNA , Species Specificity
18.
Mol Ecol ; 27(22): 4556-4571, 2018 11.
Article in English | MEDLINE | ID: mdl-30226013

ABSTRACT

A long-term debate in evolutionary biology is the extent to which reproductive isolation is a necessary element of speciation. Hybridizing plants in general are cited as evidence against this notion, and oaks specifically have been used as the classic example of species maintenance without reproductive isolation. Here, we use thousands of SNPs generated by RAD sequencing to describe the phylogeny of a set of sympatric white oak species in California and then test whether these species exhibit pervasive interspecific gene exchange. Using RAD sequencing, we first constructed a phylogeny of ten oak species found in California. Our phylogeny revealed that seven scrub oak taxa occur within one clade that diverged from a common ancestor with Q. lobata, that they comprise two subclades, and they are not monophyletic but include the widespread tree oak Q. douglasii. Next, we searched for genomic patterns of allele sharing consistent with gene flow between long-divergent tree oaks with scrub oaks. Specifically, we utilized the D-statistic as well as model-based inference to compare the signature of shared alleles between two focal tree species (Q. lobata and Q. engelmannii) with multiple scrub species within the two subclades. We found that introgression is not equally pervasive between sympatric tree and scrub oak species. Instead, gene flow commonly occurs from scrub oaks to recently sympatric Q. engelmannii, but less so from scrub oaks to long-sympatric Q. lobata. This case study illustrates the influence of ancient introgression and impact of reproductive isolating mechanisms in preventing indiscriminate interspecific gene exchange.


Subject(s)
Gene Flow , Genetics, Population , Hybridization, Genetic , Quercus/genetics , Sympatry , Alleles , California , Evolution, Molecular , Models, Genetic , Phylogeny , Trees/genetics
19.
Mol Ecol ; 27(15): 3159-3173, 2018 08.
Article in English | MEDLINE | ID: mdl-29924880

ABSTRACT

Seed and pollen dispersal shape patterns of gene flow and genetic diversity in plants. Pollen is generally thought to travel longer distances than seeds, but seeds determine the ultimate location of gametes. Resolving how interactions between these two dispersal processes shape microevolutionary processes is a long-standing research priority. We unambiguously isolated the separate and combined contributions of these two dispersal processes in seedlings of the animal-dispersed palm Oenocarpus bataua to address two questions. First, what is the spatial extent of pollen versus seed movement in a system characterized by long-distance seed dispersal? Second, how does seed dispersal mediate seedling genetic diversity? Despite evidence of frequent long-distance seed dispersal, we found that pollen moves much further than seeds. Nonetheless, seed dispersal ultimately mediates genetic diversity and fine-scale spatial genetic structure. Compared to undispersed seedlings, seedlings dispersed by vertebrates were characterized by higher female gametic and diploid seedling diversity and weaker fine-scale spatial genetic structure for female gametes, male gametes and diploid seedlings. Interestingly, the diversity of maternal seed sources at seed deposition sites (Nem ) was associated with higher effective number of pollen sources (Nep ), higher effective number of parents (Ne ) and weaker spatial genetic structure, whereas seed dispersal distance had little impact on these or other parameters we measured. These findings highlight the importance maternal seed source diversity (Nem ) at frugivore seed deposition sites in driving emergent patterns of fine-scale genetic diversity and structure.


Subject(s)
Arecaceae/genetics , Gene Flow/genetics , Seedlings/genetics , Seeds/genetics , Arecaceae/physiology , Genetics, Population , Microsatellite Repeats/genetics , Pollen/genetics , Pollen/physiology , Seed Dispersal/genetics , Seed Dispersal/physiology , Seedlings/physiology , Seeds/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...