Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(35): e2302871, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37394983

ABSTRACT

Incorporating crystalline organic semiconductors into electronic devices requires understanding of heteroepitaxy given the ubiquity of heterojunctions in these devices. However, while rules for commensurate epitaxy of covalent or ionic inorganic material systems are known to be dictated by lattice matching constraints, rules for heteroepitaxy of molecular systems are still being written. Here, it is found that lattice matching alone is insufficient to achieve heteroepitaxy in molecular systems, owing to weak intermolecular forces that describe molecular crystals. It is found that, in addition, the lattice matched plane also must be the lowest energy surface of the adcrystal to achieve one-to-one commensurate molecular heteroepitaxy over a large area. Ultraviolet photoelectron spectroscopy demonstrates the lattice matched interface to be of higher electronic quality than a disordered interface of the same materials.

2.
ACS Appl Mater Interfaces ; 13(8): 10231-10238, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33591716

ABSTRACT

Hybrid organic-inorganic metal-halide perovskites have emerged as versatile materials for enabling low-cost, mechanically flexible optoelectronic applications. The progress has been commendable; however, technological breakthroughs have outgrown the basic understanding of processes occurring in bulk and at device interfaces. Here, we investigated the photocurrent at perovskite/organic semiconductor interfaces in relation to the microstructure of electronically active layers. We found that the photocurrent response is significantly enhanced in the bilayer structure as a result of a more efficient dissociation of the photogenerated excitons and trions in the perovskite layer. The increase in the grain size within the organic semiconductor layer results in reduced trapping and further enhances the photocurrent by extending the photocarriers' lifetime. The photodetector responsivity and detectivity have improved by 1 order of magnitude in the optimized samples, reaching values of 6.1 ± 1.1 A W-1, and 1.5 × 1011 ± 4.7 × 1010 Jones, respectively, and the current-voltage hysteresis has been eliminated. Our results highlight the importance of fine-tuning film microstructure in reducing the loss processes in thin-film optoelectronics based on metal-halide semiconductors and provide a powerful interfacial design method to consistently achieve high-performance photodetectors.

3.
Chem Sci ; 10(45): 10543-10549, 2019 Dec 07.
Article in English | MEDLINE | ID: mdl-32055377

ABSTRACT

Herein, we describe the design and synthesis of a suite of molecules based on a benzodithiophene "universal crystal engineering core". After computationally screening derivatives, a trialkylsilylethyne-based crystal engineering strategy was employed to tailor the crystal packing for use as the active material in an organic field-effect transistor. Electronic structure calculations were undertaken to reveal derivatives that exhibit exceptional potential for high-efficiency hole transport. The promising theoretical properties are reflected in the preliminary device results, with the computationally optimized material showing simple solution processing, enhanced stability, and a maximum hole mobility of 1.6 cm2 V-1 s-1.

4.
Bioresour Technol ; 128: 553-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23208181

ABSTRACT

High temperature steam gasification/reforming of biomass-methane mixtures was carried out in an indirectly heated entrained flow reactor to analyze the feasibility of controlling the output composition of the major synthesis gas products: H(2), CO, CO(2), CH(4). A 2(3) factorial experimental design was carried out and compared to thermodynamic equilibrium predictions. Experiments demonstrated the product gas composition is mostly dependent on temperature and that excess steam contributes to CO(2) formation. Results showed that with two carbon-containing reactants it is possible to control the gas composition of the major products. At 1500 °C, the equilibrium results accurately predicted the syngas composition and can be used to guide optimization of the syngas for downstream liquid fuel synthesis technologies.


Subject(s)
Biomass , Gases/chemical synthesis , Incineration/methods , Methane/chemical synthesis , Models, Chemical , Plant Extracts/chemistry , Steam , Computer Simulation , Hot Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...