Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 341: 139983, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37643650

ABSTRACT

Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) present in various water sources have raised a serious concern on their health risk worldwide. Anion exchange is known to be one of the effective treatment methods but the resin properties suitable for theses contaminants have not been fully understood. We examined four commercially available anion exchange resins with different properties (DIAION™ PA312, HPA25M, UBA120, and WA30) and one polymer-based adsorbent (HP20), for their PFOA and PFOS removal in the batch experiment. All or a part of the selected resins were further characterized for their functional group, surface morphology and pore size distribution. The 72 h batch experiment with the 100 mg/L PFOA or PFOS in the laboratory pure water matrix showed a superior capacity of the strong base anion exchange resins, the porous-type HPA25M and PA312, and the gel-type UBA120, for PFOA removal (92.6-97.9%). Among those resins, the high porous HPA25M was suggested most effective due to its remarkably high reaction rate and effectiveness to PFOS (99.9%). In the groundwater matrix, however, the performance of the those anion exchange resins was generally suppressed, causing up to 71% decrease in their removal rates. The least matrix impact was observed for PFOS removal by HPA25M, which indicated the resin's high selectivity to the contaminant. The physiochemical analysis indicated that the presence of relatively large pores (1 nm-10 nm) over HPA25M played an important role in the PFAS removal.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Groundwater , Water Pollutants, Chemical , Anion Exchange Resins/chemistry , Water Pollutants, Chemical/analysis , Water/analysis , Fluorocarbons/analysis , Caprylates/chemistry , Alkanesulfonic Acids/chemistry , Groundwater/chemistry
2.
Chemosphere ; 329: 138585, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37028728

ABSTRACT

Perfluorooctanesulfonic acid (PFOS) is a persistent organic substance that has been extensively applied in many industries and causes severe, widespread adverse health impacts on humans and the environment. The development of an effective PFOS treatment method with affordable operational costs has been expected. This study proposes the biological treatment of PFOS using microbial capsules enclosing a PFOS-reducing microbial consortium. The objective of this study was to evaluate the performance of the polymeric membrane encapsulation technique for the biological removal of PFOS. First, a PFOS-reducing bacterial consortium, composed of Paracoccus (72%), Hyphomicrobium (24%), and Micromonosporaceae (4%), was enriched from activated sludge by acclimation and subsequent subculturing with PFOS containing media. The bacterial consortium was first immobilized in alginate gel beads, then enclosed in membrane capsules by coating the gel beads with a 5% or 10% polysulfone (PSf) membrane. The introduction of microbial membrane capsules could increase PFOS reduction to between 52% and 74% compared with free cell suspension, which reduced by 14% over three weeks. Microbial capsules coated with 10% PSf membrane demonstrated the highest PFOS reduction at 80% and physical stability for six weeks. Candidate metabolites including perfluorobutanoic acid (PFBA) and 3,3,3- trifluoropropionic acid were detected by FTMS, suggesting the possible biological degradation of PFOS. In microbial membrane capsules, the initial adsorption of PFOS on the shell membrane layer enhanced subsequent biosorption and biological degradation by PFOS-reducing bacteria immobilized in the core alginate gel beads. The 10%-PSf microbial capsules exhibited a thicker membrane layer with the fabric structure of a polymer network, which maintained longer physical stability than 5%-PSf microbial capsules. This outcome suggests the potential application of microbial membrane capsules to PFOS-contaminated water treatment.


Subject(s)
Polymers , Sulfones , Humans , Polymers/chemistry , Sulfones/chemistry , Bacteria , Alginates/chemistry , Capsules/chemistry
3.
J Environ Manage ; 324: 116367, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36183533

ABSTRACT

This research investigates the effects of landfill leachate effluent concentrations from moving bed biofilm reactor (MBBR) on stress-induced Chlorella vulgaris and Scenedesmus armatus lipid production and post-treatment micropollutant degradation. The effluent concentrations were varied between 25%, 50%, 75%, and 100% (v/v). The landfill leachate influent was treated using two-stage moving bed biofilm reactor under 24 h and 18 h hydraulic retention time (HRT). The results indicated that the effluent concentration was positively correlated with the stress-induced microalgae lipid production in the post-treatment of residual micropollutants. C. vulgaris and S. armatus completely remove residual micropollutants in the effluent. The superoxide dismutase and peroxidase activity were positively correlated with the cellular lipid content. The lipid content of C. vulgaris and S. armatus cultivated in the 18 h HRT effluent were 31-51% and 51-64%, while those in the 24 h HRT effluent were 15-16% and 5-19%. The optimal condition of microalgae cultivation for the post-treatment of residual micropollutants was 50-75% (v/v) effluent concentrations under 18 h HRT, achieving the highest lipid production of 113-116 mg/L for C. vulgaris and 74-75 mg/L for S. armatus. Essentially, the MBBR landfill leachate effluent holds promising potential as a substrate for microalgae lipid production.


Subject(s)
Chlorella vulgaris , Microalgae , Water Pollutants, Chemical , Chlorella vulgaris/metabolism , Water Pollutants, Chemical/analysis , Biofilms , Bioreactors , Lipids , Biomass
SELECTION OF CITATIONS
SEARCH DETAIL
...