Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Commun ; 4(4): fcac179, 2022.
Article in English | MEDLINE | ID: mdl-35950092

ABSTRACT

The continuous stream of multisensory information between the brain and the body during body-environment interactions is crucial to maintain the updated representation of the perceived dimensions of body parts (metric body representation) and the space around the body (the peripersonal space). Such flow of multisensory signals is often limited by upper limb sensorimotor deficits after stroke. This would suggest the presence of systematic distortions of metric body representation and peripersonal space in chronic patients with persistent sensorimotor deficits. We assessed metric body representation and peripersonal space representation in 60 chronic stroke patients with unilateral upper limb motor deficits, in comparison with age-matched healthy controls. We also administered a questionnaire capturing explicit feelings towards the affected limb. These novel measures were analysed with respect to patients' clinical profiles and brain lesions to investigate the neural and functional origin of putative deficits. Stroke patients showed distortions in metric body representation of the affected limb, characterized by an underestimation of the arm length and an alteration of the arm global shape. A descriptive lesion analysis (subtraction analysis) suggests that these distortions may be more frequently associated with lesions involving the superior corona radiata and the superior frontal gyrus. Peripersonal space representation was also altered, with reduced multisensory facilitation for stimuli presented around the affected limb. These deficits were more common in patients reporting pain during motion. Explorative lesion analyses (subtraction analysis, disconnection maps) suggest that the peripersonal space distortions would be more frequently associated with lesions involving the parietal operculum and white matter frontoparietal connections. Moreover, patients reported altered feelings towards the affected limb, which were associated with right brain damage, proprioceptive deficits and a lower cognitive profile. These results reveal implicit and explicit distortions involving metric body representation, peripersonal space representation and the perception of the affected limb in chronic stroke patients. These findings might have important clinical implications for the longitudinal monitoring and the treatments of often-neglected deficits in body perception and representation.

2.
Cortex ; 136: 56-76, 2021 03.
Article in English | MEDLINE | ID: mdl-33460913

ABSTRACT

To efficiently interact with the external world, the brain needs to represent the size of the involved body parts - body representations (BR) - and the space around the body in which the interactions with the environment take place - peripersonal space representation (PPS). BR and PPS are both highly flexible, being updated by the continuous flow of sensorimotor signals between the brain and the body, as observed for example after tool-use or immobilization. The progressive decline of sensorimotor abilities typically described in ageing could thus influence BR and PPS representations in the older adults. To explore this hypothesis, we compared BR and PPS in healthy young and older participants. By focusing on the upper limb, we adapted tasks previously used to evaluate BR and PPS plasticity, i.e., the body-landmarks localization task and audio-tactile interaction task, together with a new task targeting explicit BR (avatar adjustment task, AAT). Results show significantly higher distortions in the older rather than young participants in the perceived metric characteristic of the upper limbs. We found significant modifications in the implicit BR of the global shape (length and width) of both upper limbs, together with an underestimation in the arm length. Similar effects were also observed in the AAT task. Finally, both young and older adults showed equivalent multisensory facilitation in the space close to the hand, suggesting an intact PPS representation. Together, these findings demonstrated significant alterations of implicit and explicit BR in the older participants, probably associated with a less efficient contribution of bodily information typically subjected to age-related decline, whereas the comparable PPS representation in both groups could be supported by preserved multisensory abilities in older participants. These results provide novel empirical insight on how multiple representations of the body in space, subserving actions and perception, are shaped by the normal course of life.


Subject(s)
Space Perception , Touch Perception , Aged , Aging , Humans , Personal Space , Physical Stimulation
3.
Brain Stimul ; 12(3): 693-701, 2019.
Article in English | MEDLINE | ID: mdl-30611706

ABSTRACT

BACKGROUND: When single pulse transcranial magnetic stimulation (TMS) is applied over the primary motor cortex (M1) with sufficient intensity, it evokes muscular contractions (motor-evoked potentials, MEPs) and muscle twitches (TMS-evoked movements). Participants may also report various hand sensations related to TMS, but the perception elicited by TMS and its relationship to MEPs and evoked movements has not been systematically studied. OBJECTIVE: The main aim of this work is to evaluate participants' kinesthetic and somatosensory hand perceptions elicited by single-pulse TMS over M1-hand area at different intensities of stimulation and their relation with MEPs and TMS-evoked movements. METHODS: We compared the number of MEPs (measured by electromyography), TMS-evoked movements (measured by an accelerometer) and participants' hand perception (measured by verbal report) elicited by TMS at different intensity of stimulation. This way, we estimated the amplitude of MEPs and the acceleration of TMS-evoked movements sufficient to trigger TMS evoked hand perceptions. RESULTS: We found that TMS-evoked hand perceptions are induced at 105% of the individual resting motor threshold, a value significantly different from the threshold inducing MEPs (about 100%) and TMS-evoked movements (about 110%). Our data indicate that only MEPs with an amplitude higher than 0.62 mV and TMS-evoked movements with acceleration higher than 0.42 m/s2 were associated with hand perceptions at threshold. CONCLUSIONS: Our data reveal the main features of TMS-evoked hand perception and show that in addition to MEPs and TMS-evoked movements, this is a separate discernible response associated to single-pulse TMS over M1.


Subject(s)
Hand/physiology , Motor Cortex/physiology , Movement , Perception , Transcranial Magnetic Stimulation , Adult , Evoked Potentials, Motor , Female , Humans , Male , Muscle Contraction
SELECTION OF CITATIONS
SEARCH DETAIL
...