Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Basic Microbiol ; 63(6): 646-657, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36737831

ABSTRACT

Bacterial surface components and extracellular compounds such as exopolysaccharides (EPSs) are crucial for interactions between cells, tolerance to different types of stress, and host colonization. Sinorhizobium meliloti produces two EPSs: Succinoglycan (EPS I), which is involved in the establishment of symbiosis with Medicago sativa, and galactoglucan (EPS II), associated with biofilm formation and the promotion of aggregation. Here, we aimed to assess their role in aggregative interactions between cells of the same strain of a given species (auto-aggregation), and between genetically different strains of the same or different species (intra- or intergeneric coaggregation). To do this, we used S. meliloti mutants which are defective in the production of EPS I, EPS II, or both. Macroscopic and microscopic coaggregation tests were performed with combinations or pairs of different bacterial strains. The EPS II-producing strains were more capable of coaggregation than those that cannot produce EPS II. This was true both for coaggregations between different S. meliloti strains, and between S. meliloti and other common rhizobacteria of agricultural relevance, such as Pseudomonas fluorescens and Azospirillum brasilense. The exogenous addition of EPS II strongly promoted coaggregation, thus confirming the polymer's importance for this phenotype. EPS II may therefore be a key factor in events of physiological significance for environmental survival, such as aggregative interactions and biofilm development. Furthermore, it might be a connecting molecule with relevant properties at an ecological, biotechnological, and agricultural level.


Subject(s)
Sinorhizobium meliloti , Sinorhizobium meliloti/genetics , Gene Expression Regulation, Bacterial , Biofilms , Medicago sativa/metabolism , Medicago sativa/microbiology , Symbiosis/genetics , Polysaccharides, Bacterial , Bacterial Proteins/genetics
2.
PLoS One ; 15(10): e0235446, 2020.
Article in English | MEDLINE | ID: mdl-33002000

ABSTRACT

We recently described a regulatory loop, which we termed autoregulation of infection (AOI), by which Sinorhizobium meliloti, a Medicago endosymbiont, downregulates the root susceptibility to secondary infection events via ethylene. AOI is initially triggered by so-far unidentified Medicago nodule signals named signal 1 and signal 1' whose transduction in bacteroids requires the S. meliloti outer-membrane-associated NsrA receptor protein and the cognate inner-membrane-associated adenylate cyclases, CyaK and CyaD1/D2, respectively. Here, we report on advances in signal 1 identification. Signal 1 activity is widespread as we robustly detected it in Medicago nodule extracts as well as in yeast and bacteria cell extracts. Biochemical analyses indicated a peptidic nature for signal 1 and, together with proteomic analyses, a universally conserved Medicago ribosomal protein of the uL2 family was identified as a candidate signal 1. Specifically, MtRPuL2A (MtrunA17Chr7g0247311) displays a strong signal activity that requires S. meliloti NsrA and CyaK, as endogenous signal 1. We have shown that MtRPuL2A is active in signaling only in a non-ribosomal form. A Medicago truncatula mutant in the major symbiotic transcriptional regulator MtNF-YA1 lacked most signal 1 activity, suggesting that signal 1 is under developmental control. Altogether, our results point to the MtRPuL2A ribosomal protein as the candidate for signal 1. Based on the Mtnf-ya1 mutant, we suggest a link between root infectiveness and nodule development. We discuss our findings in the context of ribosomal protein moonlighting.


Subject(s)
Medicago truncatula , Plant Proteins/metabolism , Ribosomal Proteins/metabolism , Root Nodules, Plant/metabolism , Sinorhizobium meliloti/metabolism , Coinfection/prevention & control , Ethylenes/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Medicago truncatula/genetics , Medicago truncatula/metabolism , Medicago truncatula/microbiology , Plant Immunity/genetics , Plant Proteins/genetics , Plant Root Nodulation/physiology , Plant Roots/metabolism , Plant Roots/microbiology , Ribosomal Proteins/genetics , Root Nodules, Plant/microbiology , Signal Transduction , Symbiosis
3.
New Phytol ; 223(3): 1505-1515, 2019 08.
Article in English | MEDLINE | ID: mdl-31059123

ABSTRACT

A complex network of pathways coordinates nodulation and epidermal root hair infection in the symbiotic interaction between rhizobia and legume plants. Whereas nodule formation was known to be autoregulated, it was so far unclear whether a similar control is exerted on the infection process. We assessed the capacity of Medicago plants nodulated by Sinorhizobium meliloti to modulate root susceptibility to secondary bacterial infection or to purified Nod factors in split-root and volatile assays using bacterial and plant mutant combinations. Ethylene implication in this process emerged from gas production measurements, use of a chemical inhibitor of ethylene biosynthesis and of a Medicago mutant affected in ethylene signal transduction. We identified a feedback mechanism that we named AOI (for Autoregulation Of Infection) by which endosymbiotic bacteria control secondary infection thread formation by their rhizospheric peers. AOI involves activation of a cyclic adenosine 3',5'-monophosphate (cAMP) cascade in endosymbiotic bacteria, which decreases both root infectiveness and root susceptibility to bacterial Nod factors. These latter two effects are mediated by ethylene. AOI is a novel component of the complex regulatory network controlling the interaction between Sinorhizobium meliloti and its host plants that emphasizes the implication of endosymbiotic bacteria in fine-tuning the interaction.


Subject(s)
Ethylenes/metabolism , Medicago truncatula/microbiology , Plant Diseases/microbiology , Plant Roots/microbiology , Sinorhizobium meliloti/physiology , Symbiosis , Bacterial Proteins/metabolism , Models, Biological , Plant Epidermis/microbiology , Plant Root Nodulation , Volatile Organic Compounds/metabolism
4.
Mol Plant Microbe Interact ; 31(10): 1075-1082, 2018 10.
Article in English | MEDLINE | ID: mdl-30136892

ABSTRACT

Bacterial surface molecules are crucial for the establishment of a successful rhizobia-legume symbiosis, and, in most bacteria, are also critical for adherence properties, surface colonization, and as a barrier for defense. Rhizobial mutants defective in the production of exopolysaccharides (EPSs), lipopolysaccharides (LPSs), or capsular polysaccharides are usually affected in symbiosis with their plant hosts. In the present study, we evaluated the role of the combined effects of LPS and EPS II in cell-to-cell and cell-to-surface interactions in Sinorhizobium meliloti by studying planktonic cell autoaggregation, biofilm formation, and symbiosis with the host plant Medicago sativa. The lpsB mutant, which has a defective core portion of LPS, exhibited a reduction in biofilm formation on abiotic surfaces as well as altered biofilm architecture compared with the wild-type Rm8530 strain. Atomic force microscopy and confocal laser microscopy revealed an increase in polar cell-to-cell interactions in the lpsB mutant, which might account for the biofilm deficiency. However, a certain level of biofilm development was observed in the lpsB strain compared with the EPS II-defective mutant strains. Autoaggregation experiments carried out with LPS and EPS mutant strains showed that both polysaccharides have an impact on the cell-to-cell adhesive interactions of planktonic bacteria. Although the lpsB mutation and the loss of EPS II production strongly stimulated early attachment to alfalfa roots, the number of nodules induced in M. sativa was not increased. Taken together, this work demonstrates that S. meliloti interactions with biotic and abiotic surfaces depend on the interplay between LPS and EPS II.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , Gene Expression Regulation, Bacterial/physiology , Mannosyltransferases/metabolism , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/physiology , Bacterial Adhesion , Bacterial Proteins/genetics , Mannosyltransferases/genetics , Mutation
5.
J Bacteriol ; 200(11)2018 06 01.
Article in English | MEDLINE | ID: mdl-29531182

ABSTRACT

An ongoing signal exchange fine-tunes the symbiotic interactions between rhizobia and legumes, ensuring the establishment and maintenance of mutualism. In a recently identified regulatory loop, endosymbiotic Sinorhizobium meliloti exerts negative feedback on root infection in response to unknown plant cues. Upon signal perception, three bacterial adenylate cyclases (ACs) of the inner membrane, namely, CyaD1, CyaD2, and CyaK, synthesize the second messenger cAMP, which, together with the cAMP-dependent Clr transcriptional activator, activates the expression of genes involved in root infection control. The pathway that links signal perception at the surface of the cell to cytoplasmic cAMP production by ACs was thus far unknown. Here we first show that CyaK is the cognate AC for the plant signal, called signal 1, that was observed previously in mature nodule and shoot extracts. We also show that inactivation of the gene immediately upstream of cyaK, nsrA (smb20775), which encodes a ß-barrel protein of the outer membrane, abolished signal 1 perception ex planta, whereas nsrA overexpression increased signal 1 responsiveness. Inactivation of the nsrA gene abolished all Clr-dependent gene expression in nodules and led to a marked hyperinfection phenotype on plants, similar to that of a cyaD1 cyaD2 cyaK triple mutant. We suggest that the NsrA protein acts as the (co)receptor for two signal molecules, signal 1 and a hypothetical signal 1', in mature and young nodules that cooperate in controlling secondary infection in S. meliloti-Medicago symbiosis. The predicted topology and domain composition of the NsrA protein hint at a mechanism of transmembrane signaling.IMPORTANCE Symbiotic interactions, especially mutualistic ones, rely on a continuous signal exchange between the symbionts. Here we report advances regarding a recently discovered signal transduction pathway that fine-tunes the symbiotic interaction between S. meliloti and its Medicago host plant. We have identified an outer membrane protein of S. meliloti, called NsrA, that transduces Medicago plant signals to adenylate cyclases in the inner membrane, thereby triggering a cAMP signaling cascade that controls infection. Besides their relevance for the rhizobium-legume symbiosis, these findings shed light on the mechanisms of signal perception and transduction by adenylate cyclases and transmembrane signaling in bacteria.


Subject(s)
Bacterial Proteins/metabolism , Medicago truncatula/microbiology , Signal Transduction , Sinorhizobium meliloti/physiology , Symbiosis , Adenylyl Cyclases/genetics , Adenylyl Cyclases/metabolism , Bacterial Proteins/genetics , Cyclic AMP/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Models, Biological , Mutation , Phenotype , Sinorhizobium meliloti/genetics
6.
Front Microbiol ; 8: 1236, 2017.
Article in English | MEDLINE | ID: mdl-28729859

ABSTRACT

The cAMP-dependent transcriptional regulator Clr of Sinorhizobium meliloti regulates the overall number of infection events on Medicago roots by a so-far unknown mechanism requiring smc02178, a Clr-target gene of unknown function. In order to shed light on the mode of action of Clr on infection and potentially reveal additional biological functions for Clr, we inventoried genomic Clr target genes by transcriptome profiling. We have found that Clr positively controls the synthesis of cAMP-dependent succinoglycan as well as the expression of genes involved in the synthesis of a so-far unknown polysaccharide compound. In addition, Clr activated expression of 24 genes of unknown function in addition to smc02178. Genes negatively controlled by Clr were mainly involved in swimming motility and chemotaxis. Functional characterization of two novel Clr-activated genes of unknown function, smb20495 and smc02177, showed that their expression was activated by the same plant signal as smc02178 ex planta. In planta, however, symbiotic expression of smc02177 proved independent of clr. Both smc02177 and smb20495 genes were strictly required for the control of secondary infection on M. sativa. None of the three smc02177, smc02178 and smb20495 genes were needed for plant signal perception. Altogether this work provides a refined view of the cAMP-dependent Clr regulon of S. meliloti. We specifically discuss the possible roles of smc02177, smc02178, smb20495 genes and other Clr-controlled genes in the control of secondary infection of Medicago roots.

7.
Genome Announc ; 2(6)2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25395641

ABSTRACT

Cáhuil Lagoon in central Chile harbors distinct microbial communities in various solar salterns that are arranged as interconnected ponds with increasing salt concentrations. Here, we report the metagenome of the 3.0- to 0.2-µm fraction of the microbial community present in a crystallizer pond with 34% salinity.

8.
Int J Mol Sci ; 14(8): 15838-59, 2013 Jul 30.
Article in English | MEDLINE | ID: mdl-23903045

ABSTRACT

The role of bacterial surface components in combination with bacterial functional signals in the process of biofilm formation has been increasingly studied in recent years. Plants support a diverse array of bacteria on or in their roots, transport vessels, stems, and leaves. These plant-associated bacteria have important effects on plant health and productivity. Biofilm formation on plants is associated with symbiotic and pathogenic responses, but how plants regulate such associations is unclear. Certain bacteria in biofilm matrices have been found to induce plant growth and to protect plants from phytopathogens (a process termed biocontrol), whereas others are involved in pathogenesis. In this review, we systematically describe the various components and mechanisms involved in bacterial biofilm formation and attachment to plant surfaces and the relationships of these mechanisms to bacterial activity and survival.


Subject(s)
Biofilms , Plants/microbiology , Bacterial Adhesion , Gram-Negative Bacteria/physiology , Lipopolysaccharides/metabolism , Plant Roots/microbiology , Symbiosis
9.
Sensors (Basel) ; 12(3): 2851-73, 2012.
Article in English | MEDLINE | ID: mdl-22736981

ABSTRACT

Bacteria of the genus Bradyrhizobium are able to establish a symbiotic relationship with peanut (Arachis hypogaea) root cells and to fix atmospheric nitrogen by converting it to nitrogenous compounds. Quorum sensing (QS) is a cell-cell communication mechanism employed by a variety of bacterial species to coordinate behavior at a community level through regulation of gene expression. The QS process depends on bacterial production of various signaling molecules, among which the N-acylhomoserine lactones (AHLs) are most commonly used by Gram-negative bacteria. Some previous reports have shown the production of QS signaling molecules by various rhizobia, but little is known regarding mechanisms of communication among peanut-nodulating strains. The aims of this study were to identify and characterize QS signals produced by peanut-nodulating bradyrhizobial strains and to evaluate their effects on processes related to cell interaction. Detection of AHLs in 53 rhizobial strains was performed using the biosensor strains Agrobacterium tumefaciens NTL4 (pZLR4) and Chromobacterium violaceum CV026 for AHLs with long and short acyl chains, respectively. None of the strains screened were found to produce AHLs with short acyl chains, but 14 strains produced AHLs with long acyl chains. These 14 AHL-producing strains were further studied by quantification of ß-galactosidase activity levels (AHL-like inducer activity) in NTL4 (pZLR4). Strains displaying moderate to high levels of AHL-like inducer activity were subjected to chemical identification of signaling molecules by high-performance liquid chromatography coupled to mass spectrometry (LC-MS/MS). For each AHL-producing strain, we found at least four different AHLs, corresponding to N-hexanoyl-DL-homoserine lactone (C(6)), N-(3-oxodecanoyl)-L-homoserine lactone (3OC(10)), N-(3-oxododecanoyl)-L-homoserine lactone (3OC(12)), and N-(3-oxotetradecanoyl)-L-homoserine lactone (3OC(14)). Biological roles of 3OC10, 3OC12, and 3OC14 AHLs were evaluated in both AHL-producing and -non-producing peanut-nodulating strains. Bacterial processes related to survival and nodulation, including motility, biofilm formation, and cell aggregation, were affected or modified by the exogenous addition of increasing concentrations of synthetic AHLs. Our results clearly demonstrate the existence of cell communication mechanisms among bradyrhizobial strains symbiotic of peanut. AHLs with long acyl chains appear to be signaling molecules regulating important QS physiological processes in these bacteria.


Subject(s)
Bradyrhizobium/physiology , Quorum Sensing , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/chemistry , 4-Butyrolactone/metabolism , Arachis/physiology , Biofilms , Bradyrhizobium/isolation & purification , Chromatography, High Pressure Liquid , Chromobacterium/isolation & purification , Chromobacterium/physiology , Plant Roots/physiology , Symbiosis , Tandem Mass Spectrometry , beta-Galactosidase/metabolism
10.
Appl Environ Microbiol ; 78(12): 4092-101, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22492433

ABSTRACT

Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodule formation on roots of alfalfa plants. S. meliloti produces two exopolysaccharides (EPSs), termed EPS I and EPS II, that are both able to promote symbiosis. EPS I and EPS II are secreted in two major fractions that reflect differing degrees of subunit polymerization, designated high- and low-molecular-weight fractions. We reported previously that EPSs are crucial for autoaggregation and biofilm formation in S. meliloti reference strains and isogenic mutants. However, the previous observations were obtained by use of "domesticated" laboratory strains, with mutations resulting from successive passages under unnatural conditions, as has been documented for reference strain Rm1021. In the present study, we analyzed the autoaggregation and biofilm formation abilities of native S. meliloti strains isolated from root nodules of alfalfa plants grown in four regions of Argentina. 16S rRNA gene analysis of all the native isolates revealed a high degree of identity with reference S. meliloti strains. PCR analysis of the expR gene of all the isolates showed that, as in the case of reference strain Rm8530, this gene is not interrupted by an insertion sequence (IS) element. A positive correlation was found between autoaggregation and biofilm formation abilities in these rhizobia, indicating that both processes depend on the same physical adhesive forces. Extracellular complementation experiments using mutants of the native strains showed that autoaggregation was dependent on EPS II production. Our results indicate that a functional EPS II synthetic pathway and its proper regulation are essential for cell-cell interactions and surface attachment of S. meliloti.


Subject(s)
Bacterial Adhesion , Biofilms/growth & development , Medicago sativa/microbiology , Sinorhizobium meliloti/isolation & purification , Sinorhizobium meliloti/physiology , Argentina , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Molecular Sequence Data , Phylogeny , Plant Roots/microbiology , Polysaccharides, Bacterial/metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sinorhizobium meliloti/classification , Sinorhizobium meliloti/genetics
11.
Biochem Mol Biol Educ ; 40(2): 108-11, 2012.
Article in English | MEDLINE | ID: mdl-22419591

ABSTRACT

Exopolysaccharide (EPS) production by the rhizobacterium Sinorhizobium meliloti is essential for root nodule formation on its legume host (alfalfa), and for establishment of a nitrogen-fixing symbiosis between the two partners. Production of EPS II (galactoglucan) by certain S. meliloti strains results in a mucoid colony phenotype. Other strains that are unable to produce EPS II display a dry phenotype, due to the presence of an insertion element in the gene expR, a key regulator involved in many important cellular processes, including production of low-molecular-weight EPS II. We describe a series of three programmed undergraduate biochemistry laboratory classes teaching PCR and electrophoresis procedures to detect non-functional expR loci in S. meliloti.


Subject(s)
Bacterial Proteins/genetics , Biochemistry/education , Electrophoresis, Agar Gel , Polymerase Chain Reaction , Polysaccharides, Bacterial/biosynthesis , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/metabolism , Curriculum , Gene Expression Regulation, Bacterial , Quorum Sensing , Trans-Activators/genetics
12.
Curr Microbiol ; 61(5): 465-70, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20383768

ABSTRACT

Planktonic cells of Sinorhizobium meliloti, a Gram-negative symbiotic bacterium, display autoaggregation under static conditions. ExpR is a LuxR-type regulator that controls many functions in S. meliloti, including synthesis of two exopolysaccharides, EPS I (succinoglycan) and EPS II (galactoglucan). Since exopolysaccharides are important for bacterial attachment, we studied the involvement of EPS I and II in autoaggregation of S. meliloti. Presence of an intact copy of the expR locus was shown to be necessary for autoaggregation. A mutant incapable of producing EPS I displayed autoaggregation percentage similar to that of parental strain, whereas autoaggregation was significantly lower for a mutant defective in biosynthesis of EPS II. Our findings clearly indicate that EPS II is the essential component involved in autoaggregation of planktonic S. meliloti cells, and that EPS I plays no role in such aggregation.


Subject(s)
Biofilms/growth & development , Glucans/physiology , Microbial Interactions , Polysaccharides, Bacterial/physiology , Sinorhizobium meliloti/physiology , Biomass , Flocculation , Galactans , Gene Expression Regulation, Bacterial , Genes, Bacterial , Quorum Sensing , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/metabolism , Symbiosis/genetics
13.
FEMS Microbiol Lett ; 302(1): 15-21, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19929968

ABSTRACT

Bacterial surface polysaccharides are crucial for establishment of successful rhizobia-legume symbiosis, and in most bacteria, are also critical for biofilm formation and surface colonization. In Sinorhizobium meliloti, the regulatory protein MucR controls exopolysaccharide production. To clarify the relationship between exopolysaccharide synthesis and biofilm formation, we studied mucR expression under growth conditions that influence attachment to polyvinylchloride, developed a microtiter plate assay to quantify biofilm formation in S. meliloti strain Rm1021 and mutants defective in succinoglycan (EPS I) and/or galactoglucan (EPS II) production, and analyzed expression of EPS I and EPS II genes by quantitative reverse transcriptase-PCR. Consistent with previous studies of planktonic bacteria, we found that disruption of the mucR gene in Rm1021 biofilms increased EPS II, but reduced EPS I gene expression. mucR expression was not affected by environmental conditions that influence biofilm formation on polyvinylchloride, and biofilm formation by Rm1021 was independent of exopolysaccharide synthesis. Other factors on the Rm1021 cell surface, and growth conditions, presumably regulate attachment and/or growth as a biofilm on polyvinylchloride.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , Galactans/biosynthesis , Glucans/biosynthesis , Polysaccharides, Bacterial/biosynthesis , Repressor Proteins/metabolism , Sinorhizobium meliloti/physiology , Adaptation, Physiological , Bacterial Adhesion/genetics , Bacterial Proteins/genetics , Environment , Fabaceae/microbiology , Gene Expression Regulation, Bacterial , Glucosyltransferases/deficiency , Glucosyltransferases/genetics , Polyvinyl Chloride , Repressor Proteins/genetics , Symbiosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...