Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Macromol Biosci ; 24(7): e2400028, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38511568

ABSTRACT

Mucosal tissues represent a major interface between the body and the external environment and are covered by a highly hydrated mucins gel called mucus. Mucus lubricates, protects and modulates the moisture levels of the tissue and is capitalized in transmucosal drug delivery. Pharmaceutical researchers often use freshly excised animal mucosal membranes to assess mucoadhesion and muco-penetration of pharmaceutical formulations which may struggle with limited accessibility, reproducibility, and ethical questions. Aiming to develop a platform for the rationale study of the interaction of drugs and delivery systems with mucosal tissues, in this work mucus-mimicking mucin-based hydrogels are synthesized by the tandem chemical and physical crosslinking of mucin aqueous solutions. Chemical crosslinking is achieved with glutaraldehyde (0.3% and 0.75% w/v), while physical crosslinking by one or two freeze-thawing cycles. Hydrogels after one freeze-thawing cycle show water content of 97.6-98.1%, density of 0.0529-0.0648 g cm⁻3, and storage and loss moduli of ≈40-60 and ≈3-5 Pa, respectively, that resemble the properties of native gastrointestinal mucus. The mechanical stability of the hydrogels increases over the number of freeze-thawing cycles. Overall results highlight the potential of this simple, reproducible, and scalable method to produce artificial mucus-mimicking hydrogels for different applications in pharmaceutical research.


Subject(s)
Cross-Linking Reagents , Hydrogels , Mucins , Mucus , Hydrogels/chemistry , Hydrogels/chemical synthesis , Mucins/chemistry , Mucus/chemistry , Cross-Linking Reagents/chemistry , Animals , Glutaral/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology
2.
Small ; 20(4): e2305475, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37715267

ABSTRACT

Sonodynamic therapy (SDT) is an anti-cancer therapeutic strategy based on the generation of reactive oxygen species (ROS) upon local ultrasound (US) irradiation of sono-responsive molecules or nanomaterials that accumulate in the tumor. In this work, the sonodynamic efficiency of sono-responsive hybrid nanomaterials composed of amorphous titanium dioxide and an amphiphilic poly(ethylene oxide)-b-poly(propylene oxide) block copolymer is synthesized, fully characterized, and investigated both in vitro and in vivo. The modular and versatile synthetic pathway enables the control of the nanoparticle size between 30 and 300 nm (dynamic light scattering) and glucosylation of the surface for active targeting of tumors overexpressing glucose transporters. Studies on 2D and 3D rhabdomyosarcoma cell cultures reveal a statistically significant increase in the sonodynamic efficiency of glucosylated hybrid nanoparticles with respect to unmodified ones. Using a xenograft rhabdomyosarcoma murine model, it is demonstrated that by tuning the nanoparticle size and surface features, the tumor accumulation is increased by ten times compared to main off-target clearance organs such as the liver. Finally, the SDT of rhabdomyosarcoma-bearing mice is investigated with 50-nm glucosylated nanoparticles. Findings evidence a dramatic prolongation of the animal survival and tumor volumes 100 times smaller than those treated only with ultrasound or nanoparticles.


Subject(s)
Nanoparticles , Rhabdomyosarcoma , Ultrasonic Therapy , Humans , Animals , Mice , Ultrasonography , Ultrasonic Therapy/methods , Nanoparticles/therapeutic use , Reactive Oxygen Species/metabolism , Polymers , Cell Line, Tumor
3.
J Control Release ; 365: 236-258, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37972767

ABSTRACT

Pulmonary arterial hypertension (PAH) is a rare, serious, and incurable disease characterized by high lung pressure. PAH-approved drugs based on conventional pathways are still not exhibiting favorable therapeutic outcomes. Drawbacks like short half-lives, toxicity, and teratogenicity hamper effectiveness, clinical conventionality, and long-term safety. Hence, approaches like repurposing drugs targeting various and new pharmacological cascades and/or loaded in non-toxic/efficient nanocarrier systems are being investigated lately. This review summarizes the status of conventional, repurposed, either in vitro, in vivo, and/or in clinical trials of PAH treatment. In-depth description, discussion, and classification of the new pharmacological targets and nanomedicine strategies with a description of all the nanocarriers that showed promising efficiency in delivering drugs are discussed. Ultimately, an illustration of the different nucleic acids tailored and nanoencapsulated within different types of nanocarriers to restore the pathways affected by this disease is presented.


Subject(s)
Pulmonary Arterial Hypertension , Humans , Pulmonary Arterial Hypertension/drug therapy , Drug Delivery Systems , Familial Primary Pulmonary Hypertension/drug therapy , Nanomedicine
4.
Materials (Basel) ; 16(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38138670

ABSTRACT

Biomaterial-centered infections of orthopedic implants remain a significant burden in the healthcare system due to sedentary lifestyles and an aging population. One approach to combat infections and improve implant osteointegration is functionalizing the implant surface with anti-infective and osteoinductive agents. In this framework, Au nanoparticles are produced on the surface of Ti-6Al-4V medical alloy by solid-state dewetting of 5 nm Au film and used as the substrate for the conjugation of a model antibiotic vancomycin via a mono-thiolated poly(ethylene glycol) linker. Produced Au nanoparticles on Ti-6Al-4V surface are equiaxed with a mean diameter 19.8 ± 7.2 nm, which is shown by high-resolution scanning electron microscopy and atomic force microscopy. The conjugation of the antibiotic vancomycin, 18.8 ± 1.3 nm-thick film, is confirmed by high resolution-scanning transmission electron microscopy and X-ray photoelectron spectroscopy. Overall, showing a link between the solid-state dewetting process and surface functionalization, we demonstrate a novel, simple, and versatile method for functionalization of implant surfaces.

5.
Carbohydr Polym ; 320: 121203, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37659791

ABSTRACT

Based on stimuli in the biological milieu, macrophages can undergo classical activation into the M1 pro-inflammatory (anti-cancer) phenotype or to the alternatively activated M2 anti-inflammatory one. Drug-free biomaterials have emerged as a new therapeutic strategy to modulate macrophage phenotype. Among them, polysaccharides polarize macrophages to M1 or M2 phenotypes based on the surface receptors they bind. Levan, a fructan, has been proposed as a novel biomaterial though its interaction with macrophages has been scarcely explored. In this study, we investigate the interaction of non-hydrolyzed and hydrolyzed Halomonas levan and its sulfated derivative with human macrophages in vitro. Viability studies show that these levans are cell compatible. In addition, RNA-sequencing analysis reveals the upregulation of pro-inflammatory pathways. These results are in good agreement with real time-quantitative polymerase chain reaction that indicates higher expression levels of C-X-C Motif Chemokine Ligand 8 and interleukin-6 genes and the M2-to-M1 reprogramming of these cells upon levan treatment. Finally, cytokine release studies confirm that hydrolyzed levans increase the secretion of pro-inflammatory cytokines and reprogram IL-4-polarized macrophages to the M1 state. Overall findings indicate that Halomonas levans trigger a classical macrophage activation and pave the way for their application in therapeutic interventions requiring a pro-inflammatory phenotype.


Subject(s)
Halomonas , Transcriptome , Humans , Gene Expression Profiling , Fructans/pharmacology , Biocompatible Materials , Cytokines/genetics , Macrophages
6.
J Control Release ; 362: 728-754, 2023 10.
Article in English | MEDLINE | ID: mdl-37690697

ABSTRACT

Gout is a common inflammatory arthritis caused by persistently elevated uric acid levels. With the improvement of people's living standards, the consumption of processed food and the widespread use of drugs that induce elevated uric acid, gout rates are increasing, seriously affecting the human quality of life, and becoming a burden to health systems worldwide. Since the pathological mechanism of gout has been elucidated, there are relatively effective drug treatments in clinical practice. However, due to (bio)pharmaceutical shortcomings of these drugs, such as poor chemical stability and limited ability to target the pathophysiological pathways, traditional drug treatment strategies show low efficacy and safety. In this scenario, drug delivery systems (DDS) design that overcome these drawbacks is urgently called for. In this review, we initially describe the pathological features, the therapeutic targets, and the drugs currently in clinical use and under investigation to treat gout. We also comprehensively summarize recent research efforts utilizing lipid, polymeric and inorganic carriers to develop advanced DDS for improved gout management and therapy.


Subject(s)
Gout , Hyperuricemia , Humans , Hyperuricemia/drug therapy , Uric Acid/metabolism , Quality of Life , Gout/drug therapy , Gout/complications , Drug Delivery Systems/adverse effects
7.
J Mater Chem B ; 11(35): 8471-8483, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37587844

ABSTRACT

Macrophages are immune cells that can be activated into either pro-inflammatory M1 or anti-inflammatory M2 phenotypes. Attempts to modulate macrophage phenotype using drugs have been limited by targeting issues and systemic toxicity. This study investigates the effect of drug-free self-assembled hydrolyzed galactomannan-poly(methyl methacrylate) (hGM-g-PMMA) nanoparticles on the activation of the human monocyte-derived macrophage THP-1 cell line. Nanoparticles are cell compatible and are taken up by macrophages. RNA-sequencing analysis of cells exposed to NPs reveal the upregulation of seven metallothionein genes. Additionally, the secretion of pro-inflammatory and anti-inflammatory cytokines upon exposure of unpolarized macrophages and M1-like cells obtained by activation with lipopolysaccharide + interferon-γ to the NPs is reduced and increased, respectively. Finally, nanoparticle-treated macrophages promote fibroblast migration in vitro. Overall, results demonstrate that hGM-g-PMMA nanoparticles induce the release of anti-inflammatory cytokines by THP-1 macrophages, which could pave the way for their application in the therapy of different inflammatory conditions, especially by local delivery.


Subject(s)
Nanoparticles , Polymethyl Methacrylate , Humans , Polymethyl Methacrylate/pharmacology , Anti-Inflammatory Agents/pharmacology , Cytokines , Macrophages , Phenotype
9.
Macromol Biosci ; 23(11): e2300193, 2023 11.
Article in English | MEDLINE | ID: mdl-37469233

ABSTRACT

The gold standard drug for colorectal cancer (CRC) treatment, 5-Fluorouracil (5-FU), induces pharmacological tolerance in long-term management. The transcriptional factor nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) plays a key role in 5-FU resistance. The aim of this work is to study the capability of polyelectrolytes complex nanoparticles of dermatan sulfate (DS) and chitosan (CS), loaded with the anti-inflammatory tripeptide IRW, to sensitize colorectal cancer cells to 5-FU. Fluorescence and flow cytometry studies confirmed the recognition by the nanoformulation, of the cluster of differentiation 44 (CD44) receptor, involved in the initiation and progression of colorectal tumors. Dynamic light scattering (DLS) and flow cytometry reinforced the importance of DS and CD44 receptor in the interaction, as the addition of DS or anti-CD44 antibody blocked the binding. Moreover, the nanoformulation also interacts with 3D colon cancer cultures, namely colonospheres, enriched in cancer stem cells (CSC), subpopulation responsible for drug resistance and metastasis. To evaluate the consequences of this interaction, the subcellular distribution of the transcriptional factor NFκB, is determined by immunofluorescence analysis. Internalization and the intracellular release of IRW inhibited nuclear translocation of NFκB and increased cellular sensitivity to 5-FU. Altogether, the nanoformulation could provide a selective delivery platform for IRW distribution to colorectal tumors, being an innovative strategy toward overcoming 5-FU resistance in CRC therapy.


Subject(s)
Chitosan , Colorectal Neoplasms , Nanoparticles , Humans , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Chitosan/pharmacology , Chitosan/therapeutic use , Dermatan Sulfate/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , NF-kappa B , Peptides/therapeutic use , Anti-Inflammatory Agents , Cell Line, Tumor
10.
Drug Deliv Transl Res ; 13(12): 3192-3203, 2023 12.
Article in English | MEDLINE | ID: mdl-37341881

ABSTRACT

Cannabidiol (CBD), a non-psychoactive constituent of Cannabis, has proven neuroprotective, anti-inflammatory and antioxidant properties though his therapeutic use, especially by the oral route, is still challenged by the poor aqueous solubility that results in low oral bioavailability. In this work, we investigate the encapsulation of CBD within nanoparticles of a highly hydrophobic poly(ethylene glycol)-b-poly(epsilon-caprolactone) block copolymer produced by a simple and reproducible nanoprecipitation method. The encapsulation efficiency is ~ 100% and the CBD loading 11% w/w (high performance liquid chromatography). CBD-loaded nanoparticles show a monomodal size distribution with sizes of up to 100 nm (dynamic light scattering), a spherical morphology, and the absence of CBD crystals (high resolution-scanning electron microscopy and cryogenic-transmission electron microscopy) which is in line with a very efficient nanoencapsulation. Then, the CBD release profile from the nanoparticles is assessed under gastric- and intestine-like conditions. At pH 1.2, only 10% of the payload is released after 1 h. Conversely, at pH 6.8, a release of 80% is recorded after 2 h. Finally, the oral pharmacokinetics is investigated in rats and compared to a free CBD suspension. CBD-loaded nanoparticles lead to a statistically significant ~ 20-fold increase of the maximum drug concentration in plasma (Cmax) and a shortening of the time to the Cmax (tmax) from 4 to 0.3 h, indicating a more complete and faster absorption than in free form. Moreover, the area-under-the-curve (AUC), a measure of oral bioavailability, increased by 14 times. Overall results highlight the promise of this simple, reproducible, and scalable nanotechnology strategy to improve the oral performance of CBD with respect to common oily formulations and/or lipid-based drug delivery systems associated with systemic adverse effects.


Subject(s)
Cannabidiol , Nanoparticles , Rats , Animals , Polyethylene Glycols/chemistry , Polyesters/chemistry , Nanoparticles/chemistry , Drug Carriers/chemistry
11.
Acta Pharm Sin B ; 13(5): 1866-1886, 2023 May.
Article in English | MEDLINE | ID: mdl-37250152

ABSTRACT

Neurodegenerative diseases are progressive conditions that affect the neurons of the central nervous system (CNS) and result in their damage and death. Neurodevelopmental disorders include intellectual disability, autism spectrum disorder, and attention-deficit/hyperactivity disorder and stem from the disruption of essential neurodevelopmental processes. The treatment of neurodegenerative and neurodevelopmental conditions, together affecting ∼120 million people worldwide, is challenged by the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier that prevent the crossing of drugs from the systemic circulation into the CNS. The nose-to-brain pathway that bypasses the BBB and increases the brain bioavailability of intranasally administered drugs is promising to improve the treatment of CNS conditions. This pathway is more efficient for nanoparticles than for solutions, hence, the research on intranasal nano-drug delivery systems has grown exponentially over the last decade. Polymeric nanoparticles have become key players in the field owing to the high design and synthetic flexibility. This review describes the challenges faced for the treatment of neurodegenerative and neurodevelopmental conditions, the molecular and cellular features of the nasal mucosa and the contribution of intranasal nano-drug delivery to overcome them. Then, a comprehensive overview of polymeric nanocarriers investigated to increase drug bioavailability in the brain is introduced.

12.
Acta Biomater ; 158: 449-462, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36596435

ABSTRACT

Nanonization of poorly water-soluble drugs has shown great potential in improving their oral bioavailability by increasing drug dissolution rate and adhesion to the gastrointestinal mucus. However, the fundamental features that govern the particle-mucus interactions have not been investigated in a systematic way before. In this work, we synthesize mucin hydrogels that mimic those of freshly excised porcine mucin. By using fluorescent pure curcumin particles, we characterize the effect of particle size (200 nm, and 1.2 and 1.3 µm), concentration (18, 35, and 71 µg mL-1), and hydrogel crosslinking density on the diffusion-driven particle penetration in vitro. Next, we derive a phenomenological model that describes the physics behind the diffusion-derived penetration and considers the contributions of the key parameters assessed in vitro. Finally, we challenge our model by assessing the oral pharmacokinetics of an anti-cancer model drug, namely dasatinib, in pristine and nanonized forms and two clinically relevant doses in rats. For a dose of 10 mg kg-1, drug nanonization leads to a significant ∼8- and ∼21-fold increase of the drug oral bioavailability and half-life, respectively, with respect to the unprocessed drug. When the dose of the nanoparticles was increased to 15 mg kg-1, the oral bioavailability increased though not significantly, suggesting the saturation of the mucus penetration sites, as demonstrated by the in vitro model. Our overall results reveal the potential of this approach to pave the way for the development of tools that enable a more rational design of nano-drug delivery systems for mucosal administration. STATEMENT OF SIGNIFICANCE: The development of experimental-theoretical tools to understand and predict the diffusion-driven penetration of particles into mucus is crucial not only to rationalize the design of nanomedicines for mucosal administration but also to anticipate the risks of the exposure of the body to nano-pollutants. However, a systematic study of such tools is still lacking. Here we introduce an experimental-theoretical approach to predict the diffusion-driven penetration of particles into mucus and investigate the effect of three key parameters on this interaction. Then, we challenge the model in a preliminary oral pharmacokinetics study in rats which shows a very good correlation with in vitro results. Overall, this work represents a robust platform for the modelling of the interaction of particles with mucosae under dynamic conditions.


Subject(s)
Mucous Membrane , Nanoparticles , Rats , Animals , Swine , Diffusion , Mucins , Biological Availability , Mucus
13.
J Colloid Interface Sci ; 626: 916-929, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35835042

ABSTRACT

Sialic acid is a fundamental component of the tumor microenvironment, modulates cell-cell and cell-extracellular matrix interactions and is associated with bad prognosis and clinical outcomes in different cancers. Capitalizing on the ability of boric acid to form cyclic esters with diols, in this work, we design self-assembled multi-micellar colloidal systems of an amphiphilic poly(vinyl alcohol)-g-poly(methyl methacrylate) copolymer surface-modified with boric acid for the active targeting of solid tumors that overexpress sialic acid. Nanoparticles display sizes in the 100-200 nm range and a spherical morphology, as determined by dynamic light scattering and high resolution-scanning electron microscopy, respectively. The uptake and anti-proliferative activity are assessed in 2D and 3D models of rhabdomyosarcoma in vitro. Surface boration increases the nanoparticle permeability and uptake, especially in rhabdomyosarcoma spheroids that overexpress sialic acid to a greater extent than 2D cultures. The biodistribution of non-borated and borated nanoparticles upon intravenous injection to a subcutaneous rhabdomyosarcoma murine xenograft model confirm a statistically significant increase in the intertumoral accumulation of the modified nanocarriers with respect to the unmodified counterparts and a sharp decrease in major clearance organs such as the liver. Overall, our results highlight the promise of these borated nanomaterials to actively target hypersialylated solid tumors.


Subject(s)
Nanoparticles , Rhabdomyosarcoma , Animals , Boric Acids , Humans , Mice , N-Acetylneuraminic Acid , Polymers , Polymethyl Methacrylate , Tissue Distribution , Tumor Microenvironment
14.
Small ; 18(28): e2201853, 2022 07.
Article in English | MEDLINE | ID: mdl-35691939

ABSTRACT

In this work, levofloxacin (LVX), a third-generation fluoroquinolone antibiotic, is encapsulated within amphiphilic polymeric nanoparticles of a chitosan-g-poly(methyl methacrylate) produced by self-assembly and physically stabilized by ionotropic crosslinking with sodium tripolyphosphate. Non-crosslinked nanoparticles display a size of 29 nm and a zeta-potential of +36 mV, while the crosslinked counterparts display 45 nm and +24 mV, respectively. The cell compatibility, uptake, and intracellular trafficking are characterized in the murine alveolar macrophage cell line MH-S and the human bronchial epithelial cell line BEAS-2B in vitro. Internalization events are detected after 10 min and the uptake is inhibited by several endocytosis inhibitors, indicating the involvement of complex endocytic pathways. In addition, the nanoparticles are detected in the lysosomal compartment. Then, the antibacterial efficacy of LVX-loaded nanoformulations (50% w/w drug content) is assessed in MH-S and BEAS-2B cells infected with Staphylococcus aureus and the bacterial burden is decreased by 49% and 46%, respectively. In contrast, free LVX leads to a decrease of 8% and 5%, respectively, in the same infected cell lines. Finally, intravenous injection to a zebrafish larval model shows that the nanoparticles accumulate in macrophages and endothelium and demonstrate the promise of these amphiphilic nanoparticles to target intracellular infections.


Subject(s)
Chitosan , Nanoparticles , Animals , Anti-Bacterial Agents/pharmacology , Humans , Macrophages/metabolism , Mice , Zebrafish
15.
Mater Today Bio ; 14: 100265, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35465145

ABSTRACT

The SARS-CoV-2 virus emerged at the end of 2019 and rapidly developed several mutated variants, specifically the Delta and Omicron, which demonstrate higher transmissibility and escalating infection cases worldwide. The dominant transmission pathway of this virus is via human-to-human contact and aerosols which once inhaled interact with the mucosal tissue, but another possible route is through contact with surfaces contaminated with SARS-CoV-2, often exhibiting long-term survival. Here we compare the adsorption capacities of the S1 and S2 subunits of the spike (S) protein from the original variant to that of the S1 subunit from the Delta and Omicron variants on self-assembled monolayers by Quartz Crystal â€‹Microbalance. The results clearly show a significant difference in adsorption capacity between the different variants, as well as between the S1 and S2 subunits. Overall, our study demonstrates that while the Omicron variant is able to adsorb much more successfully than the Delta, both variants show enhanced adsorption capacity than that of the original strain. We also examined the influence of pH conditions on the adsorption ability of the S1 subunit and found that adsorption was strongest at pH 7.4, which is the physiological pH. The main conclusion of this study is that there is a strong correlation between the adsorption capacity and the transmissibility of the various SARS-CoV-2 variants.

16.
J Control Release ; 342: 81-92, 2022 02.
Article in English | MEDLINE | ID: mdl-34974029

ABSTRACT

Secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycoprotein overexpressed by several cancers. Because SPARC shows high binding affinity to albumin, we reasoned that pediatric sarcoma xenografts expressing SPARC would show enhanced uptake and accumulation of nanoparticle albumin-bound (nab)-paclitaxel, a potent anticancer drug formulation. We first evaluated the expression of SPARC in patient-derived xenografts (PDXs) of Ewing sarcoma, rhabdomyosarcoma and osteosarcoma, finding variable SPARC gene expression that correlated well with SPARC protein measured by immunoblotting. We revealed that the activity of the fusion gene chimera EWSR1-FLI1, the genetic driver of Ewing sarcoma, leads to lower expression of the gene SPARC in these tumors, likely due to enriched acetylation marks of the histone H3 lysine 27 at regions including the SPARC promoter and potential enhancers. Then, we used SPARC-edited Ewing sarcoma cells (A673 line) to demonstrate that SPARC knocked down (KD) cells accumulated significantly less amount of nab-paclitaxel in vitro than SPARC wild type (WT) cells. In vivo, SPARC KD and SPARC WT subcutaneous xenografts in mice achieved similar maximum intratumoral concentrations of nab-paclitaxel, though drug clearance from SPARC WT tumors was significantly slower. We confirmed such SPARC-mediated long-term intratumoral accumulation of nab-paclitaxel in Ewing sarcoma PDX with high expression of SPARC, which accumulated significantly more nab-paclitaxel than SPARC-low PDX. SPARC-high PDX responded better to nab-paclitaxel than SPARC-low tumors, although these results should be taken cautiously, given that the PDXs were established from different patients that could have specific determinants predisposing response to paclitaxel. In addition, SPARC KD Ewing sarcoma xenografts responded better to soluble docetaxel and paclitaxel than to nab-paclitaxel, while SPARC WT ones showed similar response to soluble and albumin-carried drugs. Overall, our results show that pediatric sarcomas expressing SPARC accumulate nab-paclitaxel for longer periods of time, which could have clinical implications for chemotherapy efficacy.


Subject(s)
Bone Neoplasms , Osteosarcoma , Albumins/metabolism , Animals , Bone Neoplasms/drug therapy , Humans , Mice , Osteonectin/genetics , Osteonectin/metabolism , Osteonectin/therapeutic use , Osteosarcoma/drug therapy , Paclitaxel/therapeutic use
17.
Biotechnol Adv ; 54: 107789, 2022.
Article in English | MEDLINE | ID: mdl-34186162

ABSTRACT

Oral administration is the most popular and patient-compliant route for drug delivery, though it raises great challenges due to the involvement of the gastro-intestine (GI) system and the drug bioavailability. Drug bioavailability is directly related to its ability to dissolve, transport and/or absorb through the physiological environment. A great number of drugs are characterized with low water solubility due to their hydrophobic nature, thus limiting their oral bioavailability and clinical use. Therefore, new strategies aiming to provide a protective shell through the GI system and improve drug solubility and permeability in the intestine were developed to overcome this limitation. Lipid-based systems have been proposed as good candidates for such a task owing to their hydrophobic nature which allows high drug loading, drug micellization ability during intestinal digestion due to the lipid content, and the vehicle physical protective environment. The use of edible lipids with high biocompatibility paves the bench-to-bedside translation. Four main types of structured lipid-based drug delivery systems differing in the physical state of the lipid phase have been described in the literature, namely emulsions, solid lipid nanoparticles, nanostructured lipid carriers, and oleogel-based particles. The current review provides a comprehensive overview of the different structured edible lipid-based oral delivery systems investigated up to date and emphasizes the contribution of each system component to the delivery performance, and the oral delivery path of lipids.


Subject(s)
Nanoparticles , Nanostructures , Administration, Oral , Biological Availability , Drug Carriers/chemistry , Drug Delivery Systems , Humans , Lipids , Liposomes , Nanostructures/chemistry
18.
Pharmaceutics ; 13(12)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34959427

ABSTRACT

Ocular drug delivery is challenging due to the very short drug residence time and low permeability. In this work, we produce and characterize mucoadhesive mixed polymeric micelles (PMs) made of chitosan (CS) and poly(vinyl alcohol) backbones graft-hydrophobized with short poly(methyl methacrylate) blocks and use them to encapsulate cannabidiol (CBD), an anti-inflammatory cannabinoid. CBD-loaded mixed PMs are physically stabilized by ionotropic crosslinking of the CS domains with sodium tripolyphoshate and spray-drying. These mixed PMs display CBD loading capacity of 20% w/w and sizes of 100-200 nm, and spherical morphology (cryogenic-transmission electron microscopy). The good compatibility of the unloaded and CBD-loaded PMs is assessed in a human corneal epithelial cell line. Then, we confirm the permeability of CBD-free PMs and nanoencapsulated CBD in human corneal epithelial cell monolayers under liquid-liquid and air-liquid conditions. Overall, our results highlight the potential of these polymeric nanocarriers for ocular drug delivery.

19.
J Control Release ; 339: 473-483, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34662585

ABSTRACT

Macrophages are highly plastic phagocytic cells that can exist in distinct phenotypes and play key roles in physiological and pathological pathways. They can be classically activated to the pro-inflammatory M1 phenotype or alternatively activated to an M2 anti-inflammatory one by various stimuli in the biological milieu. Different biomaterials polarize macrophages to M1 or M2 phenotypes and emerged as a very promising strategy to modulate their activation and performance. In this work, we investigate the ability of drug-free amphiphilic nanoparticles (hydrodynamic diameter of ~130 nm) produced by the self-assembly of a graft copolymer of hydrolyzed galactomannan, a natural polysaccharide of galactose and mannose, that was hydrophobized in the side-chain with poly(methyl methacrylate) blocks and that can encapsulate hydrophobic drugs, to trigger macrophage polarization. The compatibility and uptake of the nanoparticles are demonstrated in the murine macrophage cell line RAW264.7 by a metabolic assay, confocal laser scanning fluorescence microscopy (CLSFM) and imaging flow cytometry in the absence and the presence of endocytosis inhibitors. Results indicate that they are internalized by both clathrin- and caveolin-mediated endocytosis. The ability of these drug-free nanoparticles to polarize these cells to the M2-like phenotype and to switch an M1 to an M2 phenotype is confirmed by the downregulation of the M1 marker cluster of differentiation 80 (CD80), and upregulation of M2 markers CD163 and CD206, as measured by flow cytometry and CLSFM. In addition, we preliminarily assess the effect of the nanoparticles on wound healing by tracking the closure of an artificial wound of RAW264.7 macrophages in a scratch assay. Findings indicate a faster closure of the wound in the presence of the nanoparticles with respect to untreated cells. Finally, a migration assay utilizing a macrophage/fibroblast co-culture model in vitro demonstrates that M2 polarization increases fibroblast migration by 24-fold with respect to untreated cells. These findings demonstrate the ability of this nanotechnology platform to interfere and change the macrophages phenotype in vitro and represent robust evidence for the investigation of their therapeutic performance alone or in combination with an encapsulated hydrophobic drug in wound models in vivo.


Subject(s)
Cytokines , Nanoparticles , Animals , Galactose/analogs & derivatives , Macrophages , Mannans , Mice
20.
Mater Sci Eng C Mater Biol Appl ; 128: 112261, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34474820

ABSTRACT

Glioblastoma multiforme (GBM) remains a major cause of mortality because treatments are precluded by to the limited transport and penetration of chemotherapeutics across the blood-brain barrier. Pitavastatin (PTV) is a hydrophobic Food and Drug Administration (FDA)-approved anticholesterolemic agent with reported anti-GBM activity. In the present study, we encapsulate PTV in silica-coated polymeric micelles (SiO2 PMs) surface-modified with the cyclic peptide Arg-Gly-Asp-Phe-Val (cRGDfV) that actively targets the αvß3 integrin overexpressed in the BBB endothelium and GBM. A central composite design is utilized to optimize the preparation process and improve the drug encapsulation ratio from 131 to 780 µg/mL. The silica shell provides full colloidal stability upon extreme dilution and enables a better control of the release kinetics in vitro with 28% of the cargo released after 12 h. Furthermore, SiO2 PMs show excellent compatibility and are internalized by human BBB endothelial cells, astrocytes and pericytes, as shown by confocal laser scanning fluorescence microscopy and flow cytometry. Finally, the anticancer efficacy is assessed in a pediatric patient-derived glioma cell line expressing high levels of the integrin subunits αv, ß3 and ß5. This PTV-loaded nanocarrier triggers apoptosis by reducing the mRNA level of anti-apoptotic genes NF-kß, IL-6, BIRC1 and BIRC5 by 89%, 33%, 81% and 63%, respectively, and the cell viability by >60%. Overall, our results suggest the potential of these hybrid nanocarriers for the targeted therapy of GBM and other tumors overexpressing integrin receptors.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/drug therapy , Cell Line, Tumor , Child , Endothelial Cells , Glioblastoma/drug therapy , Humans , Integrins , Micelles , Silicon Dioxide
SELECTION OF CITATIONS
SEARCH DETAIL