Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Protoplasma ; 257(1): 141-156, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31471650

ABSTRACT

This article deals with the distribution of callose and of the homogalacturonan (HG) epitopes recognized by LM20, JIM5, and 2F4 antibodies in cell walls of differentiating and functioning stomatal complexes of the monocotyledon Zea mays and the dicotyledon Vigna sinensis. The findings revealed that, during stomatal development, in these plant species, callose appears in an accurately spatially and timely controlled manner in cell walls of the guard cells (GCs). In functioning stomata of both plants, callose constitutes a dominant cell wall matrix material of the polar ventral cell wall ends and of the local GC cell wall thickenings. In Zea mays, the LM20, JIM5, or 2F4 antibody-recognized HG epitopes were mainly located in the expanding cell wall regions of the stomatal complexes, while in Vigna sinensis, they were deposited in the local cell wall thickenings of the GCs as well as at the ledges of the stomatal pore. Consideration of the presented data favors the view that in the stomatal complexes of the monocotyledon Z. mays and the dicotyledon V. sinensis, the esterified HGs contribute to the cell wall expansion taking place during GC morphogenesis and the opening of the stomatal pore. Besides, callose and the highly de-esterified HGs allow to GC cell wall regions to withstand the mechanical stresses exerted during stomatal function.


Subject(s)
Epitopes/metabolism , Pectins/metabolism , Plant Stomata/metabolism , Vigna/metabolism , Zea mays/metabolism , Cell Wall/metabolism , Plant Stomata/ultrastructure , Vigna/ultrastructure , Zea mays/ultrastructure
2.
Plant Biol (Stuttg) ; 20(2): 223-237, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29247575

ABSTRACT

The distribution of homogalacturonans (HGAs) displaying different degrees of esterification as well as of callose was examined in cell walls of mature pavement cells in two angiosperm and two fern species. We investigated whether local cell wall matrix differentiation may enable pavement cells to respond to mechanical tension forces by transiently altering their shape. HGA epitopes, identified with 2F4, JIM5 and JIM7 antibodies, and callose were immunolocalised in hand-made or semithin leaf sections. Callose was also stained with aniline blue. The structure of pavement cells was studied with light and transmission electron microscopy (TEM). In all species examined, pavement cells displayed wavy anticlinal cell walls, but the waviness pattern differed between angiosperms and ferns. The angiosperm pavement cells were tightly interconnected throughout their whole depth, while in ferns they were interconnected only close to the external periclinal cell wall and intercellular spaces were developed between them close to the mesophyll. Although the HGA epitopes examined were located along the whole cell wall surface, the 2F4- and JIM5- epitopes were especially localised at cell lobe tips. In fern pavement cells, the contact sites were impregnated with callose and JIM5-HGA epitopes. When tension forces were applied on leaf regions, the pavement cells elongated along the stretching axis, due to a decrease in waviness of anticlinal cell walls. After removal of tension forces, the original cell shape was resumed. The presented data support that HGA epitopes make the anticlinal pavement cell walls flexible, in order to reversibly alter their shape. Furthermore, callose seems to offer stability to cell contacts between pavement cells, as already suggested in photosynthetic mesophyll cells.


Subject(s)
Cell Shape/physiology , Cell Wall/physiology , Polysaccharides/physiology , Cell Wall/ultrastructure , Ferns/physiology , Ferns/ultrastructure , Glucans/metabolism , Microscopy, Electron, Transmission , Pectins/metabolism , Plant Leaves/physiology , Vigna/physiology , Vigna/ultrastructure , Zea mays/physiology , Zea mays/ultrastructure
3.
Ann Bot ; 117(3): 401-19, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26802013

ABSTRACT

BACKGROUND AND AIMS: This work investigates the involvement of local differentiation of cell wall matrix polysaccharides and the role of microtubules in the morphogenesis of mesophyll cells (MCs) of three types (lobed, branched and palisade) in the dicotyledon Vigna sinensis and the fern Asplenium nidus. METHODS: Homogalacturonan (HGA) epitopes recognized by the 2F4, JIM5 and JIM7 antibodies and callose were immunolocalized in hand-made leaf sections. Callose was also stained with aniline blue. We studied microtubule organization by tubulin immunofluorescence and transmission electron microscopy. RESULTS: In both plants, the matrix cell wall polysaccharide distribution underwent definite changes during MC differentiation. Callose constantly defined the sites of MC contacts. The 2F4 HGA epitope in V. sinensis first appeared in MC contacts but gradually moved towards the cell wall regions facing the intercellular spaces, while in A. nidus it was initially localized at the cell walls delimiting the intercellular spaces, but finally shifted to MC contacts. In V. sinensis, the JIM5 and JIM7 HGA epitopes initially marked the cell walls delimiting the intercellular spaces and gradually shifted in MC contacts, while in A. nidus they constantly enriched MC contacts. In all MC types examined, the cortical microtubules played a crucial role in their morphogenesis. In particular, in palisade MCs, cortical microtubule helices, by controlling cellulose microfibril orientation, forced these MCs to acquire a truncated cone-like shape. Unexpectedly in V. sinensis, the differentiation of colchicine-affected MCs deviated completely, since they developed a cell wall ingrowth labyrinth, becoming transfer-like cells. CONCLUSIONS: The results of this work and previous studies on Zea mays (Giannoutsou et al., Annals of Botany 2013; 112: : 1067-1081) revealed highly controlled local cell wall matrix differentiation in MCs of species belonging to different plant groups. This, in coordination with microtubule-dependent cellulose microfibril alignment, spatially controlled cell wall expansion, allowing MCs to acquire their particular shape.


Subject(s)
Cell Wall/metabolism , Embryophyta/metabolism , Mesophyll Cells/metabolism , Microtubules/metabolism , Morphogenesis , Polysaccharides/metabolism , Cell Wall/drug effects , Cell Wall/ultrastructure , Colchicine/pharmacology , Embryophyta/drug effects , Epitopes/chemistry , Epitopes/metabolism , Glucans/metabolism , Mesophyll Cells/cytology , Mesophyll Cells/drug effects , Mesophyll Cells/ultrastructure , Microtubules/drug effects , Morphogenesis/drug effects , Staining and Labeling , Tubulin/metabolism
4.
Protoplasma ; 252(1): 181-98, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24972554

ABSTRACT

The determination of the division plane in protodermal cells of the fern Asplenium nidus occurs during interphase with the formation of the phragmosome, the organization of which is controlled by the actomyosin system. Usually, the phragmosomes between adjacent cells were oriented on the same plane. In the phragmosomal cortical cytoplasm, an interphase microtubule (MT) ring was formed and large quantities of endoplasmic reticulum (ER) membranes were gathered, forming an interphase U-like ER bundle. During preprophase/prophase, the interphase MT ring and the U-like ER bundle were transformed into a MT and an ER preprophase band (PPB), respectively. Parts of the ER-PPB were maintained during mitosis. Furthermore, the plasmalemma as well as the nuclear envelope displayed local polarization on the phragmosome plane, while the cytoplasm between them was occupied by distinct ER aggregations. These consistent findings suggest that Α. nidus protodermal cells constitute a unique system in which three elements of the endomembrane system (ER, plasmalemma, and nuclear envelope) show specific characteristics in the establishing division plane. Our experimental data support that the organization of the U-like ER bundle is controlled on a cellular level by the actomyosin system and intercellularly by factors emitted from the leaf apex. The possible role of the above endomembrane system elements on the mechanism that coordinates the determination of the division plane between adjacent cells in protodermal tissue of A. nidus is discussed.


Subject(s)
Endoplasmic Reticulum/metabolism , Plant Leaves/metabolism , Nuclear Envelope
5.
Ann Bot ; 112(6): 1067-81, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23969761

ABSTRACT

BACKGROUND AND AIMS: The morphogenesis of lobed mesophyll cells (MCs) is highly controlled and coupled with intercellular space formation. Cortical microtubule rings define the number and the position of MC isthmi. This work investigated early events of MC morphogenesis, especially the mechanism defining the position of contacts between MCs. The distributions of plasmodesmata, the hemicelluloses callose and (1 → 3,1 → 4)-ß-d-glucans (MLGs) and the pectin epitopes recognized by the 2F4, JIM5, JIM7 and LM6 antibodies were studied in the cell walls of Zea mays MCs. METHODS: Matrix cell wall polysaccharides were immunolocalized in hand-made sections and in sections of material embedded in LR White resin. Callose was also localized using aniline blue in hand-made sections. Plasmodesmata distribution was examined by transmission electron microscopy. RESULTS: Before reorganization of the dispersed cortical microtubules into microtubule rings, particular bands of the longitudinal MC walls, where the MC contacts will form, locally differentiate by selective (1) deposition of callose and the pectin epitopes recognized by the 2F4, LM6, JIM5 and JIM7 antibodies, (2) degradation of MLGs and (3) formation of secondary plasmodesmata clusterings. This cell wall matrix differentiation persists in cell contacts of mature MCs. Simultaneously, the wall bands between those of future cell contacts differentiate with (1) deposition of local cell wall thickenings including cellulose microfibrils, (2) preferential presence of MLGs, (3) absence of callose and (4) transient presence of the pectins identified by the JIM5 and JIM7 antibodies. The wall areas between cell contacts expand determinately to form the cell isthmi and the cell lobes. CONCLUSIONS: The morphogenesis of lobed MCs is characterized by the early patterned differentiation of two distinct cell wall subdomains, defining the sites of the future MC contacts and of the future MC isthmi respectively. This patterned cell wall differentiation precedes cortical microtubule reorganization and may define microtubule ring disposition.


Subject(s)
Cell Differentiation , Mesophyll Cells/physiology , Plasmodesmata/ultrastructure , Zea mays/physiology , Antibodies/immunology , Cell Wall/physiology , Epitopes , Glucans/metabolism , Mesophyll Cells/ultrastructure , Microscopy, Electron, Transmission , Microtubules/metabolism , Pectins/immunology , Pectins/metabolism , Plasmodesmata/physiology , Polysaccharides/metabolism , Seedlings/growth & development , Seedlings/physiology , Seedlings/ultrastructure , Zea mays/growth & development , Zea mays/ultrastructure
6.
Med Chem ; 1(5): 487-99, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16787334

ABSTRACT

The solution models of [Tyr3]octreotate (DPhe1-Cys2-Tyr3-DTrp4-Lys5-Thr6-Cys7-Thr8-COOH, disulfide bridged) (I), its analogs functionalized with an open chain tetraamine chelator, N4-[Tyr3]octreotate (II), and the N4-(Asp)2-[Tyr3]octreotate (III) peptide have been determined through 2D 1H NMR spectroscopy in DMSO. Chemical shift analysis has been performed in an attempt to elucidate structural changes occurring during attachment of the tetraamine to the peptide backbone. NMR-derived geometrical constraints have been used in order to calculate high resolution conformers of the above peptides. Conformational analysis of the three synthetic analogues, have shown that these somatostatin analoges adopt a predominant antiparallel beta-sheet conformation characterized by a beta-like turn spanning residues DTrp4 and Lys5 which is supported in the case of N4-(Asp)2-[Tyr3]octreotate and N4-[Tyr3]octreotate by medium range NOEs. These data indicate that the above-mentioned molecules adopt a rather constrained structure in the 4-residue loop Tyr3-Thr6. Additionally, the C-terminal of [Tyr3]octreotate, comprising Cys7 and Thr8, appears to form a turn-like structure manifested by characteristic side-chain NOEs between Lys5 and Thr8, which have not been detected for the other two compounds. These data are discussed in the light of previous structural data of Sandostatin (octreotide) and suggest that attachment of the N4-chelator and two Asp residues at the N-end of [Tyr3]octreotate impose considerable structural changes and affect the binding properties of these peptides. Indeed, the IC50 values determined during competition binding assays against the sst2 (somatostatin subtype 2 receptor) suggest that the presence of the N4 group enhances receptor affinity, while extension of peptide chain by two negatively-charged Asp residues impairs receptor affinity at approximately one order of magnitude.


Subject(s)
Dimethyl Sulfoxide/chemistry , Octreotide/analogs & derivatives , Octreotide/chemistry , Binding Sites , Binding, Competitive , Chelating Agents/chemistry , Chelating Agents/pharmacology , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Spectroscopy/standards , Models, Molecular , Molecular Structure , Octreotide/pharmacology , Protein Structure, Secondary , Receptors, Somatostatin/chemistry , Receptors, Somatostatin/drug effects , Reference Standards , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...